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So let’s start with the noise free case as usual, so the same way we started with the noise free 
case for the impulse response, now we are starting with the noise free case for the arbitrary 
input output data case, the idea is the same, we are going to stack, this time we are going to 
stack output data, like we stack impulse response data.

And what is our goal? Our goal is to get A, B, C, D, 
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we never knew and when in LKG when we are learning A, B, C, D, determining A, B, C, D will
be so difficult, right, life can present you a lot of surprises.

So what we do is we stack up to R, so we assume that you are standing at K from Y(k) we go 
up to Y(K + R-1) and all I have done is I have written the output equations at each of those 
instance, so you will recognize that this is nothing but OR, unsurprisingly that has to be OR. 



And this matrix that we have here, why do I call it GR? What do you recognize that matrix as? 
Based on the, I’m tempted to give you a clue, but let’s see if you can, of what? Is it a Hankel 
matrix exactly? So it’s not a Hankel matrix, because Hankel matrix has a structure, but it’s a 
matrix of something, correct, so it’s a matrix of impulse response coefficients, right, you 
recognize these are, this is G(1), this is G(0), 
(Refer Slide Time: 02:07)

in fact what we could have done is from the arbitrary input output data, what is a simple way of 
estimating A, B, C, D, first estimate the impulse response coefficients through FIR modeling, 
and simply apply Kung’s method, that’s it, there is no, you know, there is no sweat broken there
we could have done that, think as to why we don’t want to do that, I mean you can do it, it will 
give you some descent estimates, but here we are not doing that, implicitly the impulse 
response coefficients are being estimated, right.

So this is nothing but the matrix of impulse response coefficients, so essentially what you are 
doing is, you are writing the convolution equation here, these GR is a matrix of impulse 
response coefficient, this is a stacked UR, so until this equation there is no issue at all. Only 
problem with subspace identification algorithm is that you run out of symbols pretty soon, okay.

The lower case, upper case, bold faced, simple faced everything, italics including Greek 
symbols and that was my experience also right in the chapter in the book. Anyway, so you can 
see that there are quite a bit of number of quantities involved here, so this part is clear, very 
good, so let’s proceed now. 

Now if you look at this equation, what is given to me in 47? I’m given Y, what else is given to 
me? U is given, so I’m supposed to estimate O, X, G, it’s quite a bit, in input output 
identification this O, X is not available, is not present at all, you just simply write the 
convolution equation life is happier, okay.
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Now what you do is you construct matrices, because you are not happy with vectors alone, 
because after all if you’re exist you’re exhausting symbols you should also exhaust one 
dimensional things, fortunately no tensors come in, we’d stop with matrices there, okay, so you 
construct this matrices and this P here denotes past for some reason will worry about that a bit 
later, so if the user chooses first R like you choose L in Hankel method and you choose M, what
are you choosing here? R and S at least easy to remember alphabetically consecutive, there L 
and M are consecutive, R and S are consecutive here, so R and S are user choices.

Again in MATLAB you must have never specified R and S, because the routine automatically 
makes this choices for you, but you should know that is making, sorry this choice is for you, 



else you know then you’re blind user, alright, so choose R construct vector use and then choose 
S construct matrices U, Y and X of course, you won’t be constructing X, but I’m just saying 
symbolically if you construct this matrix, then you can rewrite the same equation 47 in terms of
the matrices here. 
(Refer Slide Time: 05:27)

The idea is to use the full data that’s available to you, and so that you can good estimates. Again
here I know Y and I know U, and what do I need to find out? Many things, I need to first find 
this OR, once I get the OR then I’ll get my A and C and then I can get my B and D through 
linear regression.

What about G? Don’t I want to find G, I also want to estimate impulse response coefficients 
right, but why do I need to? What is my objective? A, B, C, D right, so I may not have to 
estimate G that is the idea here, although G is unknown, it is not the unknown of interest to me, 
therefore I may want to eliminate this term somehow that is the key idea in subspace ID, 
because it is a unknown that is not of interest to me, but still needs to be implicitly calculated in
order to estimate OR, what do I do? I take a smarter root and that is the beautiful idea in 
subspace ID where this term is killed completely.

How do you think I can kill it? That is through linear algebra methods, so you imagine that you 
are multiplying both sides of this equation with something, so that selectively that term is killed
out, that term is zero it out, what would be that term? Sorry, G inverse will not zero it out, so 
some kind of matrix that is orthogonal to UP, right, and that is what we do by projecting YP on 
to the orthogonal compliment of UP, 
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so you multiply both sides with the orthogonal compliment of UP such that the product of UP 
and by definition if he say that there is some matrix is an orthogonal compliment of another 
matrix A, then the product of those two is 0, so very briefly talked about orthogonal projections 
not fully, let’s talk about the concept and the numerical implementation, so the orthogonal 
projection of the row space of a matrix A on to the row space of another matrix B, 
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now you have to be careful whether you are projecting the row space or the column space, if 
you’re post multiplying then it is column space and then you know and so on, so keep in mind, 
in certain texts the definition, this definition is followed, okay, but this corresponds to the 
projections of row space of A onto the column space of B, remember, alright.



So you want to project the row space of a matrix A on to the row space of B, and this is denoted
as A forward slash B, what is this projection business? You have learnt in least squares right, so 
if you recall least squares, what is it that we are trying to do? Suppose the vector Y lives in a 
two dimensional space, there is a vector Y that lives in a 2 dimensional space, and my regress 
are is only the X axis, then the least square estimate is nothing of Y, is nothing but the 
projection of this two dimensional thing vector on to the one dimensional thing, so this is called
the orthogonal projection of Y on to X, this is the orthogonal projection of this vector Y on to X.
Why is it called orthogonal? Because the residual is orthogonal, okay, the residual is 
orthogonal, I can take an oblique projection also which we will work talk about shortly, but that
oblique projection would mean that the error is making it a certain angle, anyway so the 
orthogonal projection here of our matrix A, so it’s a bit more involved here, we have just talked 
about vector spaces but here we are talking of row spaces of a matrix and so on is given by this 
expression, 
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and the quantity here with which your post multiplying A we can denote that as pi B, you can 
use any other symbol but we have use this symbol.

And therefore we can write the orthogonal projection as A times pi B, and the orthogonal 
compliment is I – pi B, alright, the compliment can be written as in fact sorry there is an 
equality missing here, it’s not A times I-pi B times A pi B perpendicular that would be deadly, 
so the pi B perpendicular is nothing but, what is pi B perpendicular? I- pi B, so that what do I 
get? A times pi B + A times pi B perpendicular is what is it that you get? A, that’s why it’s 
called a orthogonal compliment, whatever is left out in this projection is contained in this, that’s
why it’s called the compliment. And what is pi B times pi B perpendicular? 0, is it correct or 
no? It’s not, pi B + pi B perpendicular is I, okay, sorry.

So now let us look at B times pi B perpendicular? What is B times pi B perpendicular? So this 
implies B times pi B perpendicular, what is it? First quantity is B, then what you get? –B so 0, 



so the projection of B on to pi B perpendicular is 0, now you get the idea why? So why do you 
think we are talking about this now? What is the idea with respect to our original problem? Post
multiply in this case with which perpendicular? Pi, what is B for us here? So we just have to 
project Y on to the orthogonal compliment of UP, so if I multiply both sides with UP 
perpendicular, then the second term is eliminated without knowing G so that’s a nice thing, I 
don’t care what G is, it is going to be 0, 
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so that is the idea, by the way the orthogonal compliment calculations, 
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this is theory, but numerically how do you implement this? A numerical implementation is done
through what is known as LQ factorization, so always remember even in least squares we have 



a solution, and then there is a numerical implementation, if you recall least squares 
implementation is numerically best implemented through either QR factorization or SVD.

Why do we have a different theory for numerical implementation? Because I’ve to worry about 
rounding of errors, robustness and so on, so likewise here computation of orthogonal 
compliment is done through LQ factorizations, so if I want to compute A pi B and A pi B 
perpendicular, I construct this matrix do an LQ factorization which you must have learnt in a 
numerical linear algebra course, and then you can compute the orthogonal projection and it’s 
compliment using this, that is numerical implementation part, right, so that we now already 
know what to do, the trick is to eliminate the term involving UP by multiplying both sides with 
this, excellent. So now what am I going to do? What do you think I should do? 
(Refer Slide Time: 14:25)

I’ve gotten rid of one term which had a unknown, of interest to me, now I want to get to this. 

Do I know the left hand side completely? Yes, so I know this two, I don’t know anything on the 
right hand side but I know that the right hand side is some OR times T, some matrix, okay, I 
know that it is OR’s times some matrix, so I’m going to use that, what we do is first compute 
this numerically, this is just through LQ factorization, same thing, this is B, 
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this is A as per our previous notation, you compute this left hand side and then the first thing to 
be shown is that the left hand side has the properties of an extended observability matrix, 
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so one thing you should remember is YP times pi UP perpendicular is not going to be exactly 
OR, you will get OR times some matrix, that is what exactly amounts to saying, I will get a 
state space model in some basis, okay, so it has been shown that rank of YP pi UP perpendicular
is N, and also that the column space of the extended observability matrix and YP UP 
perpendicular are equal, I’m avoiding those proofs you can refer to the text.

So the idea is simply compute SVD of this, 
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of course T is just to show that there is an ambiguity, you can multiply both sides with T and 
still you will get the answer and you will get some observability matrix, so all you do is step 1 
construct this matrices Y and U, step 2 implement this, compute this orthogonal compliment 
through LQ factorization, and step 3 do an SVD of that, so you see the idea is more or less the 
same as Ho and Kalman’s method, the only difference is now we are dealing with both input 
and output, there I didn’t take the input into account at all, why is that? I’ve already taken into 
that account by writing a relation between G’s and state space matrices, there the input is only 
one at time zero and zero later on, so the input doesn’t appear at all, here the input comes into 
play because we are dealing with arbitrary input output data, that’s all.
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So you can also rewrite this in so called future states, and future inputs and so earlier we called 
this as past, so if you look at the matrices U, here we wrote as UR(0), UR(1) up to UR(S-1), 
right, you can also start at a different time and write it, so there it started off from 0, 
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so what is done and if you read the subspace ideal literature the entire data that you have is 
considered to be divided into past and future and so on depending on where you start off, and 
there is a reason for doing that we’ll not worry about it, but you can also essentially rewrite 
your algorithm, you don’t have to start from 0, you can actually start from R and proceed up to 
R+S-1 the equation remains the same, it doesn’t change, and you do the SVD and so on, so I’m 



not showing you the example for the MOESP deterministic is, straightaway we’ll jump to the 
noisy case and then close the discussion on subspace ideal.

Now in the noisy case, how do you expect this equation 64 or similar one that you’ve seen 
before to change? What will be the difference? You’ve written this for the noise free case right? 
Yeah, so there will be an additional term where now the impulse response coefficients of the 
noise model comes into picture, 
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by the way the nice thing about the innovations form, you recall the innovations form that we 
had written, we had written innovations form X hat(K+1) A X hat(K), I’m avoiding, it’s 
understood one step ahead predictions + some K prime will drop the prime, and we’ll also drop 
the sub index on K and then we have Y(K) = CX(K) + DU(K) + E(K). I’m sorry, sorry, correct, 
thank you.

So now we know from this already that G(Q inverse) is simply C(QI-A) inverse B + D, the nice
thing here is I can write the noise model H, why? Because already everything in terms of E(K), 
what would be H now? That’s all, that’s all? There is no identity? Plus identity? 
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All you have to do is what is the equivalent of D here for noise, do you think of noise is another
input + identity, otherwise it will violate the assumption on time series models, correct, so we 
couldn’t do this in the general state space description form, you remember we said I have to 
construct V(K) if it a time series model and then get my H. Whereas with the innovations form I
can write the noise model straightaway and that’s a beauty.

So earlier we had construct GR and we said that is a matrix of impulse response coefficients of 
G, 
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that things don’t change, all you have, the way you look at it is you have an additional input 
called noise, earlier we didn’t have this term, this term was missing, correct, now I have an 
additional input called noise which, whose the relation between Y and noise is determined by 
this impulse response coefficients, look at the GR and HR they have the same structure, but 
there is a difference, there are two differences, what are the two differences? Diagonal matrix is 
all identity whereas we had D there, and instead of B you have K, that’s all, otherwise it doesn’t
make any difference.

Now what do I have to do? To get, again the story is the same, I’m given Y, sorry, and I’m given
U and I want to get OR, but I’ve also not given H, I’m not given E, that is a challenge now, that 
is the major difference between the noise free case and the noisy case, in the noise free case I 
was able to kill this term, right, but now with the noisy case how can I kill this term, I don’t 
have E, right that is going to be the challenge, 
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so let’s see how we do that, that is the only step that is remaining and then we are done.

So as usual we kill the, we zero out the second term by projecting Y on to the orthogonal 
compliment of UP, 
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done, and then we are left with these two terms, how do I get rid of this term, any idea? How do
I get rid of the noise term? So now we turn to an IV kind of approach, right, so I use 
instruments like we did in our IV approach for the input output models, i somehow seek 
instruments, some instruments called big sai, 
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in some text books they use big Z, but that can be confusing because Z we use for input output 
data putting together and so on.



Anyway, so essentially I’m interested in this some instruments sai, same conditions that we 
have imposed in IV method, remember, it should be uncorrelated with the noise term and highly
correlated with what I want to estimate, those are the exact conditions that we have imposed, so
what is a natural choice of instruments? So of course you have to go into the structure of this 
matrices, I should choose the instrument such that this is satisfied, here we are writing, time 
domain version of the requirement but a theoretically requirement is it should be uncorrelated.

What does E consist of? Matrix of errors, and pi UF consist of orthogonal compliment of UF, 
right, so what is a natural choice of sai? The past inputs, if I use past inputs then I can expect 
this to go to 0, so we can also expect this to be a Franken, expect of course proofs are available, 
I’m just saying intuitively natural choice of sai is to use a past inputs, this is the idea you can 
call the past input MOESP, 
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so now you see the subscripts you have to notice carefully, this F here is future, because we 
have done a partitioning of data into past and future, now you understand why we are doing 
that, the instruments are now going to be based on past inputs, alright, and it can be shown that 
with this choice of instruments these two conditions are satisfied.

But generally this choice of instruments is recommended again I’m avoiding the proof, when 
the process noise is absent, okay, that is when K is 0, that means for output error models it is 
ideally suited. What do we mean by only suitable? I’ll talk about it shortly, in the general case 
when the process noise is also present, 
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in the first case we choose the instruments to be U, and you can choose that to deal with 
measurement noise cases, the measurement noise could be white colored and so on, but 
whenever the process noise is present it is recommended to use these instruments, of course you
will have to use a dimensions carefully here, although I write here UP YP, you will have to be 
careful with the dimension so that it matches things, and remember the dimension of here sai F 
is 2R/S, the dimension of UP is R/S, and I’m multiplying here with transpose, so the sai 
transpose is the same in both this cases, the sai transpose has the same number of rows S, it’s 
only the columns that are different.

I have fewer columns here in the first case, and more number of columns in the second case, but
that doesn’t matter, the matrix multiplication comparability will be maintained that is not an 
issue, anyway, so it can be shown that again this choice of instruments where I’m choosing past
outputs and past inputs as the instruments, they’ll satisfy the requirements under open loop 
conditions provided the inputs are persistently exciting, which is something that we’ll briefly 
talk about after we are done with this. So this approach leads to what is known as the past 
output MOESP.

So you understand now the idea you put, you think of Ho and Kalman’s method, and you think 
of subspace ID there are lot of similarities, in subspace ID we do a smart way of avoiding the 
impulse response calculations by zeroing out the term using projections for noise free case, for 
noisy case we have an additional step of using the, setting up the instruments and constructing 
the instruments and correlating the data with the instruments, so that’s it, so this is the step 
putting together you construct these matrices and these instruments, perform SVD of this 
matrix. Now this matrix is important, important right, the first step multiplication is to zeroed 
the effects of inputs, 
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the second step multiplication is to killed the effects of noise, so I do an SVD, what will I be 
left out with? If I do that, if you go back to this equation, when I multiply both sides with sai 
transpose this term will come OR XF, I don’t worry about this term all I have to show is that the
column space of the left hand side, sorry, is the same as a column space of OR, that’s all I have 
to guarantee and that is shown, and that the rank of this is N, that is also shown, the rank of the 
left hand side is the same as a rank of, is the same as order of the minimal realization.
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So all I do is now construct this left hand side matrix, because I know Y, I know U, I know my 
instruments, I can construct it, I do an SVD which will give me the rank and also the factors 



that I want, observability matrix essentially here notice the controllability matrix doesn’t come 
into picture at all, why? Because I’m not estimating B here, I’m only first interested in 
estimating OR, so that is another difference between Ho and Kalman’s method and this method 
here, alright, so do that than determine the order, extended observability matrix, estimate C and 
A like you do in Kung’s method and then estimate B and D as a linear regression problem, 
that’s it, right, so the initial conditions Kalman gain and noise covariance matrices can be also 
computed, 
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you can refer either to this book alright or much better books perhaps on subspace ID for 
details, and the other thing that you should remember is we are computing this gamma R which 
is 1/N, do you remember? YF pi UF perpendicular and sai I transpose, I can always pre-
multiply and post multiply this with suitable matrices without changing the results, results in 
the sense without affecting the order analysis, the A and C will be affected.

The moment I pre–multiply and post multiply gamma R with some weighting matrices, what I 
am doing is essentially changing the basis in which I’m identifying the state, that is one thing 
and it can also be shown that this pre and post multiplication helps achieve, 
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depending on how you choose your W1 and W2 you can achieve invariance to the choice of 
units of Y and U, see that is another thing that you have to always watch out for in data 
analysis, which is that the method can be sensitive to the choice of units for Y and U, always 
you should choose a method that is invariant to the choice of units.

What has been shown in the literature that CVA, the canonical variate analysis among the three 
has this invariance it chooses W1 and W2 in such a way that whatever units you choose for Y 
and U the results won’t change, and that it is also robust, more robust than MOESP and N4SID,
so that is the basic idea.
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