
CH5230: System Identification

State-Space/Subspace Identification

Part 4

Okay. So welcome back to the lecture on State-Space Identification. In the 
previous lecture we were introduced to the concepts of observability and Kalman 



filtering. And we also obtained a preview of what subspace ID algorithms can do 
for us in this lecture what we are going to do is, we're going to go into the full 
details of the subspace ID algorithms. However we'll start with the simpler case 
where we'll assume that the impulse response data is available. And that there is
no noise in this data. And then gradually build on that where the target is to 
reach the scenario in which the data to an arbitrary input and that is the 
response to an arbitrary input is available and that the data is corrupted with 
noise. towards the end we will talk a structure State-Space identification as well, 
very briefly.

 So let's start off by recapping some of the concepts of Kalman filtering as we 
have learnt Kalman filter is a predictor corrector algorithm. It predicts the next 
state based on the guests of the state at this instant and then makes a 
correction which we call as a filtered estimate once the new measurement is 
available. So this is a schematic that we discussed yesterday in the previous 
lecture at length. 

(Refer Slide Time: 1:42) 

As I had said, the Kalman gain which denotes how much importance has to be 
given to the correction depends on two things, the error or the confidence that 
we have in the prior estimate and the error or the confidence that we have in the
measurement. So depending on the relative ratio you would have the Kalman 
gain taking small or large values, right. But always when Kalman gain is small it 



means that I'm giving less importance to the measurement. And if it is large of 
course, I'm placing more importance to the measurement that I have.

(Refer Slide Time: 2:21)

And the prediction error which is yk munus  C, X hat minus k at the optimum is 
known as the innovation. This is a term that we have seen earlier also when we 
were discussing times series modeling. And what this means is that the optimum
prediction has been obtained through the C X hat minus K. whatever we have left
out is ek. This is a property of the Kalman filter not every filter will give you 
necessarily this. So that is important and that should be also expected because 
it's a minimum means square error estimator.
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And we will based on this understanding and this term called innovation we will 
shortly come across this innovations form of state- space description that I briefly
talked about in the previous lecture. Right. And this is the point here of Kalman 
gains steadying out to a fixed value. Is something that I had broached on in the 
previous lecture that for LTI systems if you give sufficiently long time then the 
Kalman gains steadies to a fixed value. So typically what is done is this fixed 
value itself is determine upfront and implemented right from step1, because it's 
anyway going to steady out. And they're versions of course where a time varying
Kalman filter gain is implemented initially and then the steady one is implement. 

What is important is to remember that this Kalman filter has been derived under 
certain assumptions which is that the system is LTI. That is a deterministic part is
LTI, the stochastic is stationary and that the noise follows Gaussian distribution. If
any of this is violated then the Kalman filter can still be implemented but will no 
longer give us optimal estimates. And of course, given that the Kalman filter was 
proposed more than 50 years ago. There have been numerous variants and 
numerous applications as well off the government for that and the variants. So 
you have for example, if this system is non-linear there is a version called the 
extended Kalman filter known as the EKF and then there is a version called un-
centered Kalman filter to handle non-Gaussianities and non-linearities in the 
deterministic process. Non-Gaussianities in this stochastic process. Details of 
which are provided in the textbook. So let's quickly look at what is this 
Innovations form. And also just wanted to add that there is a worked out example
of the Kalman filter in the textbook. I would like you to refer to that example. 
We'll move on and we'll talk about this innovations form.
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 This innovations form of state-space description is an alternative way of 
describing the general state-space description that we have seen earlier. The 
general state-space description is something that we have seen in the previous 
lecture. This is the most general one and these are the covariance matrices. Now
we know at least from our discussion on subspace identification algorithms that 
ultimately when they estimate the state-space model, the states that they have 
from the model are going to be optimal states, optimally estimated ones. And 
they are nothing but Kalman states essentially. Therefore it may be nice to write 
the state-space form in the form of in terms of this optimal estimates itself and 
that is the motivation for going towards the innovations form. So what you do is, 
you in order to derive this innovation form, you go to this equation and start 
asking-- So for example here, you look at this equation.
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This equation in fact, the prediction comes from the state equation. So the 
starting point for innovations form is the state equation itself. Instead of calling 
this now at as x hat minus we revert to the more familiar notation where we 
write x hat of K plus 1. For example, you would write x hat of K plus 1. Given k. 
As in fact, sorry, here, since everything in terms of k we'll write it in k first. So x 
hat of k given k minus 1 is a x k minus 1 but we'll replace now with the hats. 
Although we say here, you know, xk minus 1, it's actually if you observed it's x 
hat k minus1. So this is k minus 1 given k minus 1, remember. X hat of k, k minus
1 given k minus 1. Plus B u k minus 1. So this forms the state equation for us. In 
fact, let me now write the equation in terms of x hat k plus 1 given K. So let's 
write it that way. A x hat, of k given k plus B u k that's it, right. This is what we 
have. Now x hat k given k has also if you go back there is a filtered estimate-- 
that is there is an updated equation that we have here, where it says, x hat of k 
given k is x hat of k given k minus 1plus this Kalman gain times minus yk minus 
cx hat minus k. So let's use that and writ the update equation. So we can write 
here x hat of k given k is hat of k given k minus 1 plus, what do we have from the
update equation? What does it say, here? k times yk minus, so for now I will drop
the time varying index there on the Kalman gain, so it's k times yk minus C. 
What do we have? H hat minus K. Right. And then of course, we have plus B uk. 
Now with the innovations with the introductions of the innovations we know that 
this term here. What is this? This is ek. Right. We have already said that the 
optimal estimates are such that this is white noise. 

So we right here a x hat of  given k minus 1 plus b uk plus k times. What do you 
get here? Ak times ek.  And I'm tempted to ask is everything okay? Too many k's 
here. x hat of k, so A times x hat of k given k minus 1 plus B uk plus A k times ek.
So that completes the state equation for us. X hat of k plus 1 given K is this. And 
then what about the output equation? What do we write? How do we write the 
output equation? Any ideas? It should be pretty state forward, it's there on the 



screen. The answer is on the screen. Anybody?  Y of k equals? Which is c x hat k 
given k minus 1 plus ek. That's all. Is there a difficulty? Why was there so much 
silence? So that's your state-space model now where the states are Kalman 
states or optimally estimated states. 

So if you were to work with the state-space model such as this one let us say, A, 
B and K C are all given. And you are given the variance of ek. And an initial 
condition is given the states that you will be generating are nothing but the 
Kalman's states that means optimally estimated states. This is essentially your 
Innovations form. All right. So we will denote this AK If you want with K prime. So 
let's get back to the discussion here. So that's what I have done and I have 
brought back the dependency of Kalman gain on time here. Is a clear? So this is 
a much more easier form to work with because now this k has a lot of straight 
interpretation that it is a Kalman k. And by the way, we have derived this 
assuming that the state and process noise are uncorrelated. Why did they say 
that? Because the Kalman equations that we have used assume that process and
noise are uncorrelated if they are not. Then you can also bring that into the 
picture. But the essential form of innovation is form-- structure of innovation form
will remain more or less the same. The nice thing here is for the output error 
model. Now let me ask you. For the output error model, what is k prime? That is 
if you are looking at multivariate output error model. 

And you want to write an innovations form for that structure model. What would 
k prime? What does output error model assume? What is assumption in that 
structure that there is about the process and measurement noise. What does 
output error-- working with output and model tantamount to? Okay, then which 
noise is unpredictable? 

So you're still in the transfer function? If you recall the previous lecture we 
talked, we interpreted the output error model in the state-space domain, right? 
What did we say about the assumptions on process and measurement noise? You
must recall the previous lecture. Correct. So you have said wx is 0, so there is no 
process noise, right? I know the institute calendar said, 26th was the last working
day in the previous calendar, apparently I have updated it. So we are still 
expected to keep your mind alert and switched on. What is the confusion Purna? 
So in the output error model the process noise is absent which means for an 
output error model k prime is 0. Right. So for an OE model k prime is 0. Of 
course, I can put a subscript here it doesn't matter. So that you the process noise
is missing and the measurement noise is only present in. The white noise is 
present only in the measurement equation. 

And likewise you can derive the structure of K for other structure-- the 
innovations form for other model structures such as ARMAX, BJ and so on and 
even ARX. Now as far as the difference between estimating the states-space 
form in the original one that we have seen and the innovation form here is that 
the objects of interest are different but they're modeling the same process. In the
original state equation we were interested in A, B, C, D, Q and R. Right. Noise 



covariance process and measurement noises. So here of course, D is missing you
can always had a D, that we have anyway we have omitted assuming one delay.

In the innovations form the objects of interest are A, B, C, D and what else? K. So 
I'm going to estimate the Kalman gain also from data now that is where we are 
heading. Until now, what we have learnt is that the Kalman gain is computed 
given the model and the noise covariance matrices. But now we have only data. 
We don't have any model. So we are supposed to estimate A, B, C, D the Kalman 
gain and the noise variance of  ek, covariance of ek. ek remember it is a vector 
of white noise equation. So we have not escaped the burden of identification but 
we have made it simpler and more interpretable. That's all. All right. And 
remember that the Kalman gain itself implicitly the function of a, b, c, d and the 
original noise covariances q and r. But the dependency is so complicated that we
don't even want to highlight it. We want to consider k  itself as a separate. entity 
to be our or separate quantity to be estimated. Right. So you should remember 
that Kalman gain is a function of A, B, C, Q,  and R. And then there is also a prior 
covariance matrix. Bu this is essentially the dependency of Kalman again. It's too
complicated. So we just don't worry about it. We just say that it is yet another 
thing to be identified. 

(Refer Slide Time: 17:23)

Okay, so with that innovations form in mind we will march ahead toward 
subspace identification. Already we have learned the concepts of observerability,
controllability and now the Kalman filter and innovations form. The main 
objective of course, is subspace identification I should say, not necessarily state-
space. Is the development of the innovations form given input, output data. And 
the entire effort consists of, you can say, you can break down the objectives into 
smaller ones. The first thing is to determine the order. How many states? What is
the dimension A? If I'm saying, if I'm interested in estimating A, B, C, D first I 
should know what the dimensions are. And those dimensions are dictated by the 
order. I already know the number of outputs and inputs, right. And then the 
estimation of A, B, C, D depending on the method that you choose to work with 



the method may either first estimate the system matrices and then the states or 
vice versa. 

There is one class of methods that estimates the states and then estimates A, B, 
C, D. That is also done. And then finally the determination of Kalman gain and 
noise covariance matrices. So what I intend to do in the rest of this lecture is to 
talk about these two mainly and I will not be spending time on how to determine 
the Kalman gain and noise covariance matrices because they are less 
complicated and relatively more straightforward ones these two items have 
resolved. So I would like you to refer to the textbook for the determination of 
Kalman gain and noise covariance matrices. They are much more simpler. 
Because once you get for example, A, B, C, D then it's all a matter of generating 
the residuals and then finding the Kalman gain a noise covariance matrices. 
Okay.  O

The core of any method whether-- broadly speaking there are three classes of 
methods that you encounter in subspace ID. One is called the N4SID. And the 
second one is called the MOESP and then the third one is the canonical variant 
analysis called the CVA. Although the names are different the core idea is the 
same which is first you construct the so-called extended observerability matrix 
and get the order. After that their tracks are different. One method estimates the 
state-space matrices focuses on getting your A, B, C, D and K. First A, B, C, D  
and then the states and so on. The other method says, no I estimate states first 
and then estimate A, B, C, D and so on depending on the situation. And then 
there is also another variation that we learn later on which will lead to the CVA. 
But as I said, the core is all the same.

So let's understand the core problem how it is solved. As I said, the key step in 
subspace ID estimation of extended observability matrix. So we'll spend some 
time on understanding this extended observability matrix and then again also go
through what is known as a realization based method put together everything 
and then we'll understand fully that  how this subspace ID algorithms work. Now 
in that process at some point in time we learn how A and C are estimated from 
the extended observability matrix. Remember the extended observability matrix 
will give us two things. One, its ranks will give me the order. Two, I'll be able to 
estimate the state matrices A and C. So what is this extended observability 
matrix? The extended observability matrix is nothing but a bloated  regular 
observability matrix. For example, what if you recall from the previous lecture, 
we have learnt that the observability matrix subscript n that is its dimension is M
by N. Its rank is nothing but the order of the system. That is the number of states
and the minimal realization. And if you recall. Let me write the expression here 
for the observability matrix. What is the observability matrix that we had 
Expression C,  CA up to CA to the n minus 1. So we can straightaway see that the
first row, assume that right now we are dealing with the single input, single 
output systems. If you're dealing with multi output then the first n y rows. For 
simplicity assume that we have single output. So the first row of ON is your C, so 



straightaway I know, how to get,  if I'm given observability matrix. Let us first 
talk about that and then we'll talk about the extended observability matrix. And 
then how do I determine A? What you do is, you use this shift property. What is 
this shift property telling me? ON in fact, this is not how it should be written. But 
because. So fine, this is fine. So what do we do here? We take the first n minus 
one rows and all the columns. How many columns does On has? O N has n 
columns. So you should see the dimensionally there is a consistency here. So 
here, you have an n minus 1 by n. All right. And then this is an n by n. And what 
about On 2, 2 n, ; what is the dimension of that? It is n minus 1 by n. So 
dimensionally things are compatible and you simply use this shift property.

Is there any issue? Sorry. There is a problem. That is why I said, there is an issue. 
So what you do is in fact-- right. No, no. So what we can do is, we don't need to 
use this thing. We can construct now an extended observability matrix now. So 
for example, we can go to O n plus1. So if I stack this up, If I stack this up then 
the next element would be C A to n. Right. That is why earlier there was an issue 
that I had pointed out in this equation, we'll correct that. So let's now work out 
things again. So you say, O n plus 1 times 1 off 1 to n. The number of columns in 
O n plus 1 is still n only. That doesn't change, remember. In O n plus 1, what has 
changed as compared to O n, the number of rows has increased by 1. If you're 
dealing with a multi output system, the number of rows increases by n y. So we 
will write the correct version of this equation here. 2 2 n plus 1, ;. Now this O n 
plus 1, I have written,  I have used MATLAB notation here. It's not the standard 
notation. So here 1:n, 1, 2 n , : this dimension of this matrix is n by n. And the 
dimension of this matrix is n by n. So matrix compatibility is obey and now I can 
write. So instead of  n here, I should have n plus 1 and there's no n minus 1. And 
likewise, this goes to n plus 1. That's the correction that has to be made. So this 
O n plus 1 that we have constructed for the purpose of estimating a is an 
example of the extended observability matrix. Why do we call it extended?  
Because if the system is of order n  then O n is full rank. 

O n plus 1 is of Frank rank, right. Anyway the maximum rank possible for O n 
plus 1 is n only, because you have only n columns. But you have more rows than 
what you can actually-- what you are supposed to fill for full row rank. So the 
column rank is always n, that's a max that you can get. And because for any 
matrix column rank and row rank are identical. If you wanted full row rank you 
should have only constructed  O n, but we have constructed O n plus 1. So this O
n plus 1 is nothing  but the extended an example of the extended observability 
matrix.
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It's an example, there are  when you talk of extended observability matrix it can 
be extended up to any point. Now in a similar way the controllability matrix and 
you may want to make the same corrections that we made here. So you want to 
make here C n plus 1 this should be n plus 1 and this should be n and this is n 
plus 1. So in a similar manner you can think of an extended controllability matrix 
as well. Although normally in all this subspace identification algorithms, the 
extended observability matrix is the one that appears predominantly. You very 
rarely see, the appearance of the controllability matrix except in the early 
algorithms by Ho and Kalman which we will discuss briefly. Right.

So the reality is that I do not know. I do not have the observability matrix with 
me or the controllability matrix with me. What I have is data. If I'm given the 
model, I can construct this or if I'm given observability matrix somehow then I 
can extract three things. What we have learnt is, given the observability and 
controllability matrices, I can extract so given O n. Let us now replace O n with O 
r,  r is some dimension we don't know. And C r which is the controllability matrix 
of some dimension. I can estimate, we can estimate. What are the things that we
can infer? Order, that's the most important thing, right. I can estimate the order. 
Tow A and C and Three, D from controllability matrix. D anyway you can 
estimate. That is something that you should understand in the states-space 
identification.  The major challenge in the state-space identification is 
identification of A, B, N, C. Identifying D is very easy. Why? Because it is the first 
impulsive response coefficient. Remember, that it is a feat through term, right. 
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It represents a feat through them. If G of 0 is 0 that means there is a unit delay 
and D0. If  G0  is not 0 then that means that it's D itself.

And D can always be estimated uniquely by and large the major challenge in 
subspace state-space identification is that A,B,C are unknowns and X's are also 
unknowns. That is what makes the problem challenging. So coming back to the 
discussion that we are in. We need to somehow get these extended observability
matrix or the extended controllability matrix that this area, once I get that then 
things become very easy. So here is our extended observability matrix. And the 
rank of O r is nx. Although I have written here C, CA, CA to the r minus 1. In 
practice I wouldn't know the-- So here when I write it, it appears that there are n 
x columns for O r, correct? Which is equal to n which is true. Always the number 
of columns in O r will be the number of columns in C. But the number of states is 
not necessarily equal to that of a minimal realization is not necessarily equal to 
the number of columns of O r when you from data. When you construct this from 
model, yes, then it will tally. Provided C, A, are all drawn from the minimal 
realization. In practice, we will only attempt to get this and from here we first 
determine the rank and then from the rank we know that then the number of 
columns that are actually present in C of a minimal realization. So that is 
procedure. The first is you obtain O r and then you compute the rank. Once you 
obtain the rank then you construct a lower order approximation. The rank r 
version of O r. So that the number of columns of the rank are approximation of O 
r or version of O r. We'll exactly equal to the number of columns of C of the 
minimal realization. Anyway we learn all of that. Likewise, one constructs an 
extended observability matrix and so on. Fine. So the goal here is to get this 
extended observability matrix.

 


