
CH5230: System Identification

Estimation of parametric model

Lecture 49 Part 1

So welcome to the lecture on estimation of parametric models. In the previous lectures, we have learnt
different facets of estimating non parametric models. And that was a right stepping stone because as 
you know in system identification, one begins with non-parametric models, gathers quite a bit of 



insights into the process characteristics, which then become useful for fitting parametric models. And 
you should recall that the reason, primary reason for turning to parametric models is parsimony. 
Right? Because non-parametric models simply involve a lot of unknowns to be estimated, of course, 
the advantage is that you make minimal assumptions. With the insights gathered from non-parametric 
models, we are in a much better position to estimate parsimonious parametric models, and we have 
already studied the parametric model family.

So the learning objectives of this lecture is to first study prediction error methods for estimation of 
parametric models. And then we'll discuss properties of this PEM estimators. In fact, PEM should 
ideally stand for Prediction-Error Minimization.

(Refer Slide Time 1:20)

So the methods here should denote, actually it should be, replaced with minimization. And we will 
also briefly study the methods for estimating each of the family of parametric models that we have 
learnt earlier, namely the ARX, ARMAX, OE, BJ models. And then we'll conclude this lecture with a 
discussion on the instrumental variable methods for which we got to peek into when we were 
discussing non-parametric model estimation.

(Refer Slide Time 1:58)



So let's recap the different parametric models that we had looked at before for composite LTI systems.
By composite, I mean, deterministic plus stochastic. So we looked at the Equation-error family, 
especially the ARX and ARMAX class of models. Then the Output-error family, which is somewhat 
contrasting to the equation-error family. And then the more generic Box-Jenkins family. Again, you 
should remember that these different families arise based on the kind of assumptions that we make on 
the plant and noise models, how we parametrize them.

So, strictly speaking, again this G of q inverse should be written as G of q inverse, theta, where theta 
is a vector of parameters that we are estimating. Likewise, H of q inverse should be H of q inverse, 
theta. So as to explicitly state that we are now dealing with parametrized forms of this plant and noise 
models. And the B and F, as you know, are polynomials in shift operators and likewise are C and D 
for H. And e is our usual Gaussian white noise. Mean 0, variance sigma square e. The goal is given 
input output data.

(Refer Slide Time 3:16)



We would like to estimate these polynomials. We’ll make the more formal statement a bit later. The 
more, I would say a comprehensive prediction-error family or the parametric family, is this so called 
PEM structure as Ljung calls it, where we have now factored out the common polynomials between 
denominated polynomials between the plant and noise models and collected them in A of q inverse.

(Refer Slide Time 3:49)



So A of q inverse, as I had pointed out in one of the lectures earlier, this is a common, I would say, 
characteristics to both plant and noise models. The F and D are now unique. They carry unique 
signatures of the plant and noise models. The other way of stating is the same thing is that F and D are
co-prime polynomials.

So I have also explained in one of the earlier lectures why we would like to factor out the common 
one, because that is also amounting to feeding in some prior knowledge. So, for example, if you go 
back to this structure, this Box-Jenkins structure, there may be commonality between F and D, which 
is not really highlighted. And if you don't supply that information, there will be additional number of 
parameters that would be estimated as against the other case, where I specify that there are some 
common factors to F and D, so that there is no repetition of parameter estimation. So, obviously 
specifying this common factor amounts to bumping in some additional information and which will 
reduce the variance of the parameter estimates.

(Refer Slide Time 5:17)

So we know very well, depending on the assumptions that you make on A, B, C, D, F, you generate 
ARX or ARMAX output-error, Box-Jenkins models, and so on.

(Refer Slide Time 5:29)



So the statement of identification of parametric models is as follows, given Z identify the polynomials
A, B, C, D, F, and variance sigma square e. This is a very, the statement is a one liner, which means 
obviously there's a lot of work to be done. Usually the problem statements if they are big than the 
work done, that has to be done is less. So that's called the law of conservation of the problem 
statement and the solution together, the length of it. And generally estimating a parametric model 
critically rests on the notion of prediction error. And here we give the expression, we have derived this
expression for the one-step prediction long ago. And consequently the one-step ahead prediction error,
in terms of, of course, now this equation 3 and 4 are in terms of the impulse response coefficients. We 
had derived also in terms of G and H, which I'll show you later on.

(Refer Slide Time 6:36)



So there are broadly speaking two generic ideas for parametric model estimation. One class of 
methods, one idea pursues this so-called prediction error minimization, where the goal is to – or the 
idea is to determine the polynomials and the variance sigma square e, such that the prediction error is 
minimized, in some sense, it could be in at least square sense, in a one norm sense and so on. Of 
course, that means that we need a measure to quantify what we mean by small and also we can 
remember that the prediction errors may be constructed from filtered data. So we'll use that a bit later. 
We'll use that idea of it later. So broadly speaking now, this idea here says that I will identify the 
polynomials in such a way that the prediction errors are small in some mathematical sense.

(Refer Slide Time 7:39)



The other class of methods that take birth from a different idea or call it correlation methods, where 
the requirement is that the prediction errors be uncorrelated with the past data. So this requirement is 
quite different. This is more on the method of moments idea, where we are looking at the second order
moments. You could use other moments, too. You can say, you can impose a stronger requirement. 
You can say, for example, that I would like to estimate the polynomial such that the prediction errors 
are independent of the past data, which means I'm ruling out non linear relations and so on, but we 
don't need to in the linear world.

Now, the instrumental variable method that I briefly mentioned earlier belongs to this class of 
methods. Normally, one encounters the prediction error minimization methods in system 
identification. There are other ideas as well. You could look at those, but these are the, broadly 
speaking, these are the two methods that you would encounter. And many times the correlation 
method is used as an initialization method for kick-starting a prediction error minimization methods, 
which I had briefly mentioned also in one of the earlier lectures.

(Refer Slide Time 8:57)



So let's spend some time on the prediction error methods because -- minimization methods when I say
prediction error methods, you should remember that we mean prediction error minimization methods. 
Because these are very common, very popularly used and this was largely, these methods are largely 
advocated by Ljung in the ‘90s and even a bit earlier, where the parameters are estimated by solving 
this optimization problem. So if there is a cost function that we are minimizing and that cost function 
here is some function, okay, where this l inverse cap is some function of the filtered prediction error. 

So it's a very fairly generic one, l inverse cap can be anything that you choose. And that will, of 
course, as we know from estimation theory, that will go on the quality of estimates and you could 
optionally choose to not have the filter, in which case the subscript on F on the prediction error will 
vanish. So there are several classes of methods that can be brought under this umbrella of prediction 
error minimization methods or PEM methods.

And the decision variable is of course theta. I didn't point out sigma square e, but the sigma square e 
can also be estimated through these methods. The general idea is to first estimate theta and then 
estimating sigma square e. You can do that or you can estimate them simultaneously. All right. So this 
epsilon f, I’m sorry, there is an upper case f here, you should have a subscript f, is the filtered 
prediction error constructed from pre-filtered data. We have talked about pre-filters earlier. In fact, we 
have shown that many of them -- model families, for example, how the output-error model can be 
viewed as ARX model on pre-filtered data, where the pre-filter is simply one over N. So the user may 
have pre-filtered the data for various reasons, maybe to remove noise, or maybe to focus on certain 
frequency ranges and so on. And that pre-filter is denoted by l, right? And PEM simplifies several 
well-known methods. That is what I meant earlier, depending on the choice of the pre-filter and the 
function and the model structure that you choose. Mostly depending on the pre-filter and the function.

(Refer Slide Time 11:14)



So let's discuss some options that are available in PEM. PEM is a very broad approach, as you can see
now, you are just minimizing some function of pre-filtered prediction error. You can, in addition, 
modify that objective function to include some kind of weighting, which means that I may not give 
same importance to all data points, I may use a different weighting. So, for example, in weighted least
squares I do that, in which case l cap now, or the l inverse cap is not only a function of the epsilon f, 
but also explicitly a function of the observation that you're looking at. And that is what essentially this
means. This explicit dependence can be factored out as in the weighted least squares case this way. So
you could do a separability, you could invoke a separability assumption and think of this l inverse cap 
as a product of two functions. One is a weighting function and other is your usual l inverse cap. So 
this is the basic idea in weighted least squares, for example.

You must have guessed by now what should be the choice of l inverse cap to obtain least squares, 
what should it be? That's all, so it’s squared to norm, right? So, in fact, since we had seen l inverse cap
at a single observation, we don't generally talk about norms unless epsilon at each observation itself is
a vector, that will happen usually for MIMO systems. So, instead of saying to norm, essentially it's a 
square. If l inverse cap is a square and there is no filtering, then the weighting is one, that it reduces to
a least squares problem. All right, so let's move on.

(Refer Slide Time 13:40)



The other option is to parametrize the function. In certain situations the function itself maybe 
parametrized by another vector eta. So you already have the parameters of the model, but the function 
itself could be now a function of some other outer set of parameters. For example, that you may have 
to bring about robustness to outliers and so on. So in other words, now the l cap is a function of this 
augmented parameter vector. And if you are going to apply some regularization, then the new 
parameter vector is also going to be optimized. So that is one option. These are all extensions of the 
PEM, or you can say embellishments that you can make.

The third embellishment that you can make to the PEM is regularization, like we did in least squares. 
So what you can do is, we can say that essentially the cost function now includes regularization. 
Right? Where if you choose regularization to be simply the square to norm of theta, then you run into 
the Tikhonov regularization, but we have talked about regularization at length earlier. So this is 
another embellishment that you can make to PEM.

(Refer Slide Time 15:01)



Now we shall look at some special cases. So we have discussed three embellishments that we can 
make to PEM. Now we’ll discuss some special cases that PEM simplifies to, depending on the choice 
of the pre-filter and the norm. So if you choose the norm to be simply the squared to norm for vector 
outputs, then we obtain the least-squares estimator, which we have just discussed. On the other hand, 
if you choose the pre-filter to be the negative logarithm of the p.d.f. or the likelihood, then you 
encounter the ML criteria, which is also very nice. So which means MLE is also now a special case of
PEM, which is good. But we already know MLE and least squares are equal and if you assume the 
data to be jointly Gaussian distributed and so on. But what we have learnt just know is that MLE and 
least squares themselves are special cases of a broader family of methods, mainly prediction error 
minimization family.

And if you add, if you choose l to be this, then what estimated you get, you get a Bayesian estimator, 
specifically you get the maximum a posteriori estimate, the map estimate. And if you choose l inverse 
cap to be the negative log-likelihood and add additional dim theta by N as a regularization function, 
so f of theta is now going to be dim theta dimension. Dim theta is essentially the number of 
parameters in theta, by N. Then that's like a regularization kind of root. And when you choose to 
optimize this, you run into AIC estimates, Akaike information criterion. And you should remember 
that for a fixed model structure, the theta hat AIC is identical to MLE. Okay. Okay. So these are the 
four different specializations that PEM specializes to. But there are other special cases as well. We 
just considered the broad classes of estimators that we normally encounter to which PEM specializes.

(Refer Slide Time 17:17)



Now, as far as choice of pre-filter is concerned, so you may wonder, what is the kind of pre-filter that 
I should choose? That depends entirely on the application and different criteria such as bias and 
variance and so on. So for example, I may want to focus only on a certain frequency range, then I 
will, let's say some low pass frequency range, low frequency range. Then I’ll filter the data or I’ll 
choose a pre-filter whose response, whose bandwidth is, in the low frequency range. Then the bias in 
the, that region is also is reduced so that the model gives you a very good fit in that frequency range. 
But at the expense of variance, increase in variance, or you could also focus on minimizing the error 
variability in that frequency range in which case the bias may shoot up and so on. Or you could say 
that I'm interested in reducing the bias in a certain frequency range and I'm willing to sacrifice the bias
on the other frequency, and that kind of compromise is also possible. So, all of this is essentially 
shaping the bias. It's called bias shaping in system identification.

In fact, in control there is something called loop shaping. You know that estimation and control are 
duals of each other. Here we talked about bias shaping, they're in control, we talk of loop shaping 
where we minimize the sensitivity of the control loop over a certain frequency range, and by a 
familiar result, a very celebrated result in control in the form of body sensitivity integral, we know 
that if you try to minimize the sensitivity of the control loop over a certain frequency range elsewhere 
in the other frequency range, the sensitivity shoots up. So pretty much you would have a similar 
situation here. As for the choice of norms, the standard choices are quadratic and log-likelihood. 
These are the standard choices. And we know already one leads to the least squares, other leads to the 
maximum likelihood.

The best option is always to choose the log-likelihood. But if you know that the data comes from a 
joint Gaussian distribution, then what you can do is, you can simply choose a quadratic. And when 
you choose the quadratic, usually it's called a quadratic PEM. And this is what the PEM routine in 
MATLAB assumes. The OE method that you choose, that you use, or the BJ method, ARMAX and so
on, essentially uses the quadratic PEM. In MATLAB system identification tool box, there are 



specialized routines for each of the model structures. And there is a genetic routine called PEM, which
can be applied to discrete time, estimating discrete time models of any structure as well as continuous 
time models. Okay? Because the PEM routine simply doesn't worry about -- doesn't necessarily cater 
to a particular model structure. Okay. So any questions?

So now the most important discussion.

(Refer Slide Time 20:51)

So we have discussed the philosophy of PEM estimators, and of course, I have not talked about how 
you minimize objective function. Why? Because we've already discussed the nonlinear least squares, 
the maximum likelihood estimation and so on. Essentially you run into a nonlinear optimization 
problem and you simply invoke a numerical optimizer and typically a modified Gauss-Newton 
method is used in this nonlinear optimizers, which is much better than the standard Gauss-Newton 
method. And that is the case of solving it. What we are interested at this juncture is how good the 
estimates are, how good these PEM estimators are, what happens. Again, you can turn to nonlinear 
least squares and you can turn to MLE and get the answers. Fine. But what is now of interest to us is 
the broad PEM estimators, whether I use least squares MLE or use or whatever PEM specializes to, 
I'm not so worried about that. I'm worried about the consistency of general PEM estimator in the 
context of system identification. So if you turn to least squares or MLE and so on, they were devised 
earlier for parameter estimation and so on. But here, we have to answer different kind of questions, 
again, related to parameter estimation. But here we would like to talk in terms of models rather than 
parameters themselves. So that is the transition that we are making. We are moving from parameters 
to models. Now it turns out that the consistency of PEM estimators depends on two things: How you 
parameterize and what the model structure is.

(Refer Slide Time 22:40)



I have mentioned this earlier, at least a couple of times in some of the earlier lectures that this is what 
we'll get to see. And even in the liquid level example I had pointed out, as to why the output-error 
model structure gets you the nice estimate, the correct estimate of the liquid level system, whereas the 
ARX model fails to. So now we have the theoretical answers in front of us. Now when it comes to 
learning the results or studying these results, it is important to get into the notion of a true system, 
which is what is denoted by S. You can think of this true system as nothing but as the DGP. So this S 
is nothing but your data generating process. Or you can say it's a true system. Okay.

And then there is this notion of model that we know, but there is something called a model set which 
we now have to introduce, a notion of a model set. All of these are fairly intuitive but require some 
formalization. So if I talk of a model set, I've spoken about this earlier as well. Essentially loosely 
speaking, model set is a collection of models. As you traverse in the parameter space, you will be 
generating different models of the same structure, and a model set is a collection of models. But 
model set is even broader, perhaps we'll see. Then there is a third notion of whether the system 
belongs to the model set or does not belong to the model set. So we'll learn a notion of model set and 
model structure and then this notion of belongingness of the system to the model and so on.

First, we'll study those and then we will be able to understand what it means to talk about these three 
different cases that I have listed. Depending on the case, you have the consistency result of the PEM 
estimator, right? So in passing, let me say that the consistency that we are talking about is not 
necessarily with respect to parameters. We are talking of consistency with respect to models. Whether 
that model will converge to the true one is what we are asking. Earlier we have asked the question 
whether the parameters will converge to the true ones. And to be able to understand -- and then there's
this notion of parametrization which we already know. To understand these three different cases, we 
will now temporarily step into some formal world of definitions of model set, model structure, and 
what it means by S belonging to M, S not belonging to M, and all this notation. Then we'll come back 
to this slide.



(Refer Slide Time 25:47)

Now in order to understand what a model set is, we will start with the notion of what is known as a 
predictor model. All right. This predictor model is not something alien or some mysterious concept. It 
is an alternative way of making the prediction of your process. Or you can say, it's an alternative way 
of describing your process. It's also a model, but it's based on the idea of prediction straight away.

(Refer Slide Time 26:18)



So if you recap, we had this one-step ahead prediction. We had derived this one-step ahead prediction 
expression long ago, right? Where Wu is given by H inverse G, if you remember this one-step ahead 
prediction and Wy is 1 minus H inverse. A very familiar expression to us. Now what we notice here is 
that, I can write the prediction, which is one of the ultimate objects of interest to me, as a filtered 
combination of the output and input. So it's just a different viewpoint. So what we are seeing is y hat 
of k given k minus 1 is essentially this. So what we are doing is we are feeding u[k] through Wu and 
y[k], of course, you will only need past y[k], although I write y[k] here, you will need only data up to 
k minus 1. And this is another filter. And then you combine the outputs of both these filters to get your
y hat of k given k minus 1.

What is the difference between this and what we have been looking at? Compare this with what we 
have been writing. We are saying, for the model, we are saying u[k] excites G, which produces y star, 
the true response, and that's corrected by v[k], which we assume is generated by white noise passing 
through a filter H, right? A stable filter. And here comes your y[k]. So what we have learnt until now 
is given G and H, and of course I know e[k] is white now, so given G and H, I can construct a 
prediction for y hat -- for y, sorry. Correct, that's what we have learnt. And we have also proved that 
the one-step ahead prediction error is e[k], which means that we have learnt how to go from models G
and H to prediction and prediction error. And we've said that the prediction error is e[k]. Prediction 
error. Given the models G and H, I can always construct the one-step ahead prediction and the 
associated prediction error which is nothing but the e[k]. Now it turns out that you can also go 
backwards. Given one-step ahead prediction and the fact that the prediction error is white, you can 
find a unique G and H. So there exists a unique mapping between the models, model find of 
description, GH description. What's this? Your prediction model. So if you are in this world, we are 
the standard description. If you're on this side of the fence, then you are in the predictor model world, 
where you are now not describing G and H, rather you are now giving Wu and Wy, and you are saying
that whatever is left out is e[k].

So an alternative way of describing the system is to specify Wy, Wu, and also specifying what is e[k]. 
What do we mean by e[k] is that we give the p. d. f of e[k], and we say that that is a one-step ahead 
prediction error and so on. And one can show that there exists a unique mapping between these two. 
Why on earth are we talking about all of this is probably the question that might be occurring to you 
at this point.

(Refer Slide Time 30:40)



Well, it turns out that when you want to define equality of models, for example, which concept 
requires this concept of equality of models? What is a concept in identification that may require you 
to talk of, think of equality of models? You have any idea? In what kind of situations and 
identification I may have to compare two different models and say that they’re equal? Can you think? 
Grey box model, no. One of the key concepts in identification requires this idea of equality of models.
Hmm. Identifiability requires. What is identifiability? I mean, identifiability has several branches to it.
But when you talk of identifiability as affected by input design, how do we want to design our input? 
We want to design our input so that I will be able to distinguish between two different models. So it 
turns out that -- sorry. When you want to formally design the input, when you want to derive the 
conditions for a very good input, then you start by first talking of equality of models, and then say that
I would like to design an input so that the input allows me to discriminate between two models, which
means that two models, structures should be unequal at all frequencies. And that's what leads to the 
derivation of the persistent excitation condition, which we shall talk about a bit later.

And in doing that, we will need this concept of predictor models. That is one place where you will 
have to talk of equality of models. So when I take two model structures, on the face of it, they may be 
different. So I may have a G1, H1 combination, and of course, accompanying sigma square e1, and I 
may have another model G2, H2 and sigma square e2. So when I compare structure wise, they may 
not be equal. But if they give me the same predictions, then we say they're equal. So that is one notion
of the equality of models. And also in defining our model set, model structure, and then the system 
belonging to the model and so on, the predictor models are unifying. The reason is that, when we talk 
of models G and H, they could be nonparametric form or they could be in parametric form. Whereas 
predictions are predictions, right? So, y hat is y hat, whether you generate using a nonparametric 
model or a parametric model, doesn't matter.

(Refer Slide Time 34:00)



As long as two models, one being a nonparametric, other being a parametric, they generate the same 
prediction. We say that two models are identical in that sense. Why do we need this? Because 
remember, we had this case, we said, we want to say S belongs to M, for example, right? What is S? S
is the true system. M is the model that I fit. Generally the system that we are dealing with may or may
not have a parametric form. We do not know. It could be a nonparametric form. But we may be fitting 
a parametric model, we are in fact in that context of discussion. So how do you say a nonparametric 
model belongs to a parametric model? How can you say that? So you need to talk of this 
belongingness and equality in some sense. And that is where this predictor models come in. So to 
summarize, what we have is essentially the predictor models.

(Refer Slide Time 35:06)



We consider the predictor model as W. In fact, there is an additional requirement on W. But if you 
specify W, then what you are specifying is a predictor model. And as I have said, you can always 
derive the G and H from this W uniquely. You don't have to start from G and H. You can start from 
this W and then derive your G and H. Of course, you have learnt how to go there from the other way 
around.


