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State Space Modeling

We will continue our lectures on process control. In the last class we talked about how to

model a process. I talked about writing conservation equations, phenomenological models,

defining variables, writing these equations for control volumes and so on. In this lecture what

I am going to do is I am going to show you the same model in a form that is called state space

modeling. Typically, undergrad control classes do not talk about state space modeling.

However, it is a very simple extension to the standard equations that we showed last time and

it  is  a  very  useful  framework  when  we  start  doing  multivariate  process  control  or

multivariable process control. So it is important to understand state space modeling and the

way I am going to do these lectures is I showed you the first principles modeling last time. I

am going to show you the same thing in state space and I am going to show you how you

solve this state space models in time domain, get some results and then show you how you

can solve the same problem in frequency domain.

We will introduce Laplace transforms at that time and then I will show you the connection

between  solving  these  equations  in  time  domain  and  frequency  domain  using  Laplace

transforms. So ultimately at the end of this series of lectures you would have understood

Laplace  transform and you would also know that  Laplace transform is  not  some general

mathematical abstraction but it is basically representing fundamental physical process.

The only thing as I mentioned in the last lecture is that while most fundamental physical

processes are non-linear by nature, the use of Laplace transform is largely for linear systems.

So you have to take this  additional  step of linearization  of the model.  So you have first

principles model which itself is a conceptualization of a process and there will be some errors

in the conceptualization. It will turn out that these models are non-linear however we want to

work with linear models because it makes the theory and implementation easier.

So we linearize the nonlinear model to linear model so there is a next level of approximation

there and once we linearize we get a transfer function model which we will see after we see

Laplace  transform.  And  you  have  to  understand  that  this  transfer  function  model  is  a

representation of the two processes.



I will be with approximation so the quality of the model will depend on how approximate

these models are in terms of what is the impact of linearization and what is impact of the

errors that we might have made in our conceptualization and so on. So you have to remember

that while these models are very useful in control, they are still approximate. Now with this

preamble let us go back to the previous lecture that we saw in this course which was simple

liquid level system model.

(Refer Slide Time: 03:18)

And from last time we did see this. You write this mass conservation equation for the control

volume of liquid in the tank and then you use this phenomenological model to come up with

consolidated model here. And we said that if you wanted the behaviour of this process at

steady state then you have to set d h by d t equal to 0 which will give you this equation, this

flow inlet at steady state is R times root of height at steady state.

Then we said because of this term right here if this is a non linear model so we linearize this

and we linearize using Taylor series approximation. And if we linearize this root of h we take

up to the first term which is what gives you this term here.



(Refer Slide Time: 04:06)

And I also said anytime you linearize you have to evaluate that function at an operating point

and the operating point that we chose is this h s s. So that is the operating point on which we

are linearizing which you can see here h minus h s s. Remember from your high school

whenever you do a Taylor series approximation you will have F of x 0 plus F prime evaluated

at x minus x 0, this is the term like that.
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So after all of this algebra is done when you put all of this in terms of deviation variables, this

is the form that you get here. The hat basically symbolises that at t equal to 0 this h hat is 0

simply because we start from a steady state. So this equation has been derived assuming we

start from a steady state. The actual value of h is h s s and the actual value of F i is F i s s but



because we define h hat has h minus h s s at time t is equal to 0, if h were in steady state then

this would also be h s s so h hat will be 0.

So that is what we have written here, h hat is 0, F i hat is 0. So look at this equation. This is

the form of the equation that we are going to use quite a bit as we go forward.
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So this is something that we saw in the last lecture and this is a recap of this and I wanted to

get to this equation because the notion of our state space model starts from here. So in general

a state space representation is written in this form x dot equals A x plus B u, y equals C x plus

D u. Here x is what we call as a state variable, y is a measurement or output variable and u is

the input  or manipulated  variable.  So in  an undergrad course we call  this  a  manipulated

variable.
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Now typically this is written in the vector form so you could have x with a dimension of n by

1 that means there are n states so x is n by 1. You could say the output variables are let us say

p in number so this would be p by 1. And the input variables are let us say m in number so

this could be m by 1. So this is the general vector form of the state space representation. We

will get back to this when we talk about multivariable control.

But since I am introducing state space representation for the first time I thought I will do the

general form and then quickly move on to the simple liquid level tank example that we see

and then tell you how all of this figures out in this tank example. Now if x is n by 1, x dot is

also n by 1 so this is a derivative of the n state. So, this is n by 1 so this A matrix has to be n

by n, only then you can do the matrix multiplication.

And similarly because u is m by 1, there are m inputs. This B matrix has to be m by m so that

this matrix multiplication can be done. Now since y is p by 1, the C matrix has to be p by n

because x is n by 1 so this multiplication can be done. And similarly this D matrix has to be p

by m and u is m by 1 so that you can do the matrix multiplication. So this is the general

scheme.
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Now if n is 1, p is 1, m is 1 then I have only one state, only one output variable and I have

only one input variable. Notice an interesting thing here. When we talk about SISO control

we talk about actually  one input and one output is what we talk about.  So that basically

means m is 1 because we said there are m inputs and p equal to 1 because we said there are p

outputs. Now n can be anything. So n can be 5, 10, 1, 3, whatever it is.

So these are not dependent on each other, right? So you could have a system where you have

five states but only one input and one output. So the key take away from this though it is not

relevant right at this point, it will become relevant later, is that you could have a SISO system

which is single input single output system, one input one output. However, for the same SISO

system in some cases it could have only one state or it could have five states, ten states and so

on.

So the notion of SISO really denotes how many inputs and outputs you have and not the

number of states you have. Now let us go back and then look at the liquid level system and

when we look at the equation from the last line in the last lecture you have equation of this

form. And if the notice this equation you will see if I want to write it in this form I will say h

hat dot because I am taking a derivative of this is some a h hat where this a for example can

be this plus b u, right, where this u is F i hat and this b is this so you can also write this as F i

hat, okay.
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So now you noticed the close similarity (bet) between this equation and this equation here.

The only difference is that it is really not a difference. The thing you have to note is that this

number of states is one in this case, right? So this matrix equation or a vector equation if you

want to think about it that way becomes a scalar equation here. Okay, so there is only one

state and there is only one input F i. So if you think about this then you can say the states h

hat and the input is F i hat.

Now what about the output? If we were solving a control problem where we are essentially

measuring the height of the tank and the output of interest that we want to control is really the

height of the tank then the output is also h hat, okay. So that is the mapping from this liquid

tank example to state space example. So I just want you to understand really that after a while

we will simply be saying x dot equal to A x plus B u but you want to understand that these

parameters and this model equations are not abstract.

They come from real physical system and if you were to model a liquid level tank problem as

a state space model you would simply write A x plus B u but you have to remember that A is

computed  using  this  resistance,  it  is  computed  using  the  area  of  the  tank and also  it  is

computed using the steady state of operation. So these parameters themselves represent or

reflect the process that you are trying to model.

So that is a very important idea to keep and you should not lose this connection because as

we go learning more and more about this we will tend to abstract all of these concepts in

terms of models and after a while I do not want it to feel like it is pure math whereas it is



really not because this A and B you remember if you have to solve a problem, have to be

calculated and those calculations will bring in the specificity in terms of the process that you

are trying to model.

So after all of this the state space model would be of this form here because I said h hat is x, x

dot is this times x plus this times u and since h hat itself is output, y equal to x. So there is

only one output and that turns out to be the one state that we have in this process. And this is

a fixed number because resistance is a fixed number, area is a fixed number and we know

what steady state we operated and again this is a fixed number.
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So this is an important thing to remember. Now if you had more than one state and more than

one input and output then when we get these fixed numbers we have to do more derivatives

for different functions and so on so that we can get a general nonlinear model into this form

right here. So if there are multiple functions you have to do the derivative of that function

with respect to the multiple states and so on.

So we will get back to that aspect of how do I convert  a general multivariable nonlinear

model into a linear state space model like this? Right now we have a simple one state one

input one output non linear model which we have converted into a state space model. Now let

us do one more example to see how this works in a very simple multivariate setting.

To simplify this and not complicate this with the derivatives and Taylor series and so on you

will notice that I will use a slightly different phenomenological model for characterizing a

flow as  a  function  of  height.  Again  this  is  an  approximation.  You  can  directly  use  this



approximation or you could write the other phenomenological model and linearize that model

to  get  to  this  approximation.  The quality  of  models  will  slightly  vary, however  both  are

approximates.

So that is something that you want to remember. In most of this modelling there is nothing

called absolute true. This is absolutely the true model, right? We will still talk about the true

process. That is our conceptualization of the true process. The true true process which is the

real process will always be abstracted out a little bit whenever you do modelling. So that is

something  that  is  very  important  to  remember.  Now just  like  what  we  described  in  the

modelling exercise before, let us do that exercise here.
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So here there are two tanks and there is flow into one tank and there is flow out of tank which

goes into another tank, right? So this is an example which is used quite often in all control

textbooks. And this is called the example of non interacting tanks. So there are two tanks

which  do  not  interact  with  each  other.  Now  as  before  let  us  start  doing  the  variable

definitions. So I know that there is height of the first time so that is the variable that will be of

interest to me. I know that flow in I have to define a variable.

I know that for flow out I have to define a variable. So if I define these variables for the first

tank it looks like I have enough variables that I need to write the model equations. I do a

similar exercise for the second tank and when I come here I do notice that I already have a

variable for the inlet so I have to only add two more h 2 and F 3 which is the flow out of the

tank. So if you collect all of this as of now I have five variables.



(Refer Slide Time: 14:45)

So like before remember, I need to look at enough equations for this variables. Then let us go

back to the first tank and then see if I have to define any more parameters. We would define A

1 as the area of this tank. Like last time we could also define a density but we know from the

last exercise that the density cancel out if you assume the density is constant.

So to keep the algebra simple I am not going to define a density. However, we know that for

this valve we have to define some resistance. So let me define a parameter resistance R 1,

okay. So these are two parameters for this tank and similarly for this tank I will have two

parameters A 2 and R 2.



(Refer Slide Time: 15:28)

Now I have five variables and I have four parameters. As I said before these parameters are

not calculated as part of the model but they are given to the model. Now let us take a close

look at the five variables that we have for the process. And then if I draw a battery limit here

something like this then I know the only input into this process is F 1. So there is no way in

which I can compute F 1 out of a model that I write.

So I am going to call F 1 as an exogenous variable and I am going to say you do not give me

the value of F 1, I cannot solve these model equations. So we will have to really look for only

the four variables. F 1 comes from outside this system. That leaves us with variables h 1. F 2,

h 2 and F 3 that I need to have equations for. And clearly and logically last time we wrote one

control volume, this time we do see that there are two control volumes which are independent

of each other that I can write a balance for.
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Now I mentioned that you could choose several different control volumes and the model

equations though they are the same, in many cases will look slightly different. For example,

in this case you could write balance for one tank and an overall balance for both the tanks. So

you could write a balance for tank 1 and an overall balance for tank 1 and 2 together. You

could write a balance for tank 2 on an overall balance or you could write a balance for tank 1

and tank 2.

So all of those will be similar but nonetheless you cannot get more than two equations. So for

example you cannot write the balance for tank 1, tank 2 on an overall balance because overall

balance  will  simply  be  the  sum of  the  other  two  balances.  So  you  can  only  write  two

equations. We have 4 variables but we know that we can use phenomenological models to get

the extra equations. So if I were to write a balance for tank 1 just like last time, this is the

accumulation term. There is a rho w remember which is getting cancelled out.

So this  is  actually  mass  accumulation,  not  volume accumulation  just  so that  we say this

scientifically correctly. Now that will be input minus output so there will be a rho w F 1

minus rho w F 2 and this simplifies to F 1 minus F 2. So this is the mass balance for tank 1

which gives us our first equation.
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Similarly, we can write a mass balance for tank 2 which gives us our second equation. So if

you notice this there are all the five variables that are participating in these two equations h 1,

h 2, F 1, F 2, F 3 but clearly this we said has to be given to us for the model to work so we

will not worry about that right now. So the remaining four variables I have two equations. So

I have to look for two more equations and clearly for each one of these valves you can write

this phenomenological model that we have.

Last time we wrote the flow across this as R times root h. We are going to simplify this and

then say we are going to use a simpler approximation, a simpler phenomenological model

where the flow is related directly linearly. So for example for flow across this valve F 2 I am

going to say it is simply R 1 times h 1 which is what is written here and for the flow across

this tank valve I am going to say the flow rate F 3 is R 2 h 2.
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Now if you substitute these back into your equations then you will get A 1 d h 1 by d t is F 1

which is something that we need to be given. F 2 from this phenomenological model is minus

R 1 h 1. And for tank 2 you have A 2 d h 2 by d t is F 2 which is R 1 h 1 minus F 3 which is R

2 h 2. So you have this equation. Now what you can do is you can rearrange this equation and

simply get some of these terms to the left hand side and you will get this equation. So this is a

very simple algebra. In the first equation I just moved R 1 to this side and then the second

equation I moved R 2 this side.
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Now just to put this in a particular form what I am going to do is I am going to define some

constants and I am going to start using these two constants tau and K which is used quite a bit



in control. Tau typically represents what is called a time constant and K represents a gain and

we will see this more and more as we do control.

So this slide is very simple algebra, right? So I am just going to show you the definitions and

I am going to show you how this translates into state space model. What I suggest you guys

do is simply look at the slide, start with the equation in the previous slide and basically go

through this algebra and get to the final form so that you are comfortable with how we do

this.
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So in this case if you look at this I define d h 1 by d t as h 1 dot, d h 2 by d t as h 2 dot and I

define two time constants tau p 1 and tau p 2 and basically I define K p 1 and K p 2. And do

some algebra and finally I will get this state space form. So this is an important form. Now

notice that if you look at this as x dot equals A x plus B u as we mentioned at the beginning of

this lecture.

If you notice there are two states h 1, h 2. So x dot is going to be 2 by 1 vector and that

basically meant A has to be a 2 by 2 matrix what we described last time. And you can say that

this A is a 2 by 2 matrix and there is only one input u, right? So one input which is basically F

1 or F i. Then basically the B matrix has to be of size 2 by 1 and you can see that this is a 2

by 1 matrix right here.
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So that is how you have a multivariable state space model that comes about which you see

using a very simple example. Now you might ask what happened to the output equation. So

the output equation depends on what you consider as output. Supposing you are interested in

measuring both h 1 and h 2 and then controlling both h 1 and h 2 then the states are h 1 and h

2 and the output will also become h 1 and h 2. So that will be two outputs.

That means based on our notation p equals 2. That means you should have the C matrix also

be of size 2 by 2. In this case if you are output are h 1 and h 2 so basically the equation you

will write is h 1 h 2 equal to 1 0 0 1 h 1 h 2. So this basically says h 1 is h 1, h 2 is h 2. So

whenever the states and the outputs are the same then you will have an identity matrix for C.
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And in the previous slide I also had y equal to C x plus D u. In this case because there is no

effect of the flow directly on this, D equal to 0. So that is how the state space model will look

like. Now this we cannot call it as a SISO system because though there is only one input

which is F 1 or F i, there are two outputs h 1 and h 2. So this is actually two outputs one input

system.

Now if it turns out that your interest for whatever reason is only in maintaining the level in

tank 1 then h 1 is your only output. So on in this case p equal to 1 so the C matrix will have to

be of size 1 by 2, right? So when you write this h 1 you will write this as 1 0 h 1 h 2 again

plus D u, since there is no effect of u here, D is 0. So if you notice this, now h 1 is h 1 is the

equation and C is 1 by 2.
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Now for some reason if your interest is in controlling h 2 or the output is h 2 then you will

write h 1 equal to 0 1 h 1 h 2 and similarly D u, this is 0, okay. Now you notice that the C

matrix differs slightly depending on what your output is. However, the difference between

these two cases and the case where both h 1 and h 2 are output is that these two cases are

SISO cases, single input single output case because the only output is h 1 here and the input

is again F 1 or F i and the only output here is h 2 and the input is F 1, okay.

So basically what this says in this example is I have a SISO system however I have more than

one state. In fact in this case I have two states. So this is how we convert a physical model

into state space model. In this case by a choice of proper or relevant or phenomenological



model that obviates the need for linearization I was able to directly write this in the linear

state space form.

However if I had chosen to model the flows as root of h 1 and root of h 2 then I would

originally get a nonlinear state space model and then I linearize that state space model and put

it into this linear state space form.
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That might be a good exercise for you guys to attempt, to see and understand how all of this

works. So with this I will conclude this lecture and I will see you in the next lecture. Thank

you.


