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MATLAB Tutorial-Controller Design - Part 3

Welcome everyone to MATLAB tutorial for process control analysis, design and assessment. In
this tutorial, we look at MATLAB implementation of model predictive controller. Just as an
introduction, I will give the formulation of MPC and I will directly go to the code section of
MATLAB and then show you how to code implement model predictive controller and how we

can during the model predictive controller in order to get the performance we require and so on.
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MPC - Introduction

* MPC solves an optimization problem online
* Computes optimal input moves

* Can handle constraints

* Easily extendable to MIMO systems

* Computationally time consuming

So the model predictive controller is a controller which solves an optimisation problem online.
So the optimisation problem is formulated such that the model predictive controller uses model
and et can be easily solved. Most of the time, we solve a quadratic program optimisation. It
computes optimal input moves which is optimal in the sense of the objective function we have

chosen. And since this is an optimisation problem, it can handle constraints easily.

And it is easily extendable to MIMO systems. The example I am going to show here is for SISO
system. But the implementation is not restricted to see SISO system. It can be extended to

MIMO. Only that we will have to look at how the structure of each term in the objective function



and prediction oriented terms are in MIMO systems. And MPC is also computationally time-

consuming but the examples which I am going to show here will be fast enough.

But if we have more inputs and more outputs for example like 25 cross 20 system where we have
25 out and we have 20 inputs then such systems will require more computational time in order to

get the optimal in order to calculate the optimal solution for the optimisation.
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MPC - formulation
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Now this is the formulation where we minimise the objective function where Y sat pine minus Y
hat of K plus whole square and there is a minimum move objective added to the deviation from
setpoint. Now the Y hat of K plus I is computed as an impulse response that finite table’s
response model with gamma coefficients. And we have the constraint that U of K plus I equals to
U of K plus M minus 1 where I is M to P. So what we are essentially saying is though we have

gamma elements of U to optimise, we choose to optimise only M elements.

And on top of it, we have limit constraints on U for all time instants which is from 1 to M.
Notice that I have not specified what P is and what M is and neither have I specified the limits.
So these will depend on individual applications and we may have to modify them to suit to get a
better performance. Look at how we can compute and make the computation easier for us to

implement it in MATLAB.
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So we are computing summation I equals to 1 to Py of k plus i reference minus y hat of k plus i
whole square. So we need to compute y of k plus I y hat of k plus i as a function of hl to h
gamma. So we have hl u of k plus h2 u of k minus 1 all the way up to h gamma u of k minus
gamma plus 1. Now in this optimisation function, we have minimized u. This u is constructed
such that it has uk, uk plus 1 all the way up to uk plus m minus 1. So these are the unknowns

which we which we have to optimise.

So this uk is unknown, whereas the rest of the terms are known. So this essentially evaluates to a
constant. And the next term y of k plus 2 will be hl times u of k plus 1 plus h2 times u of k plus
all the way up to h gamma times u of k minus gamma plus 2. This will continue up to y hat of k
plus m minus 1 which is hl times u of k plus m minus 2 all the way up to h gamma times u of k
minus gamma plus and minus 1. And y hat of k plus m is hl times u of k plus m minus 1 all the

way.

Similarly they will have y hat of k plus m plus 1. Here is where because the constraint that u of k
plus m equals to u of k plus m minus 1. Because of that we will have h1 plus h2 times u of k plus
m minus 1 plus all the way. So finally we will have y hat of k plus p which is hl to h into u of k
plus m minus 1 and etc. So we can notice the general structure where we have hl, h2 hl, h3 h2

h1, like this times u plus some known matrix which we can formulate.
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s clear; A

2 FEEHEEFHHHEIHIHHH4%%%%% System specfication HHFHHHHFFHHEEIIHHIEHHIHHHH%S
B sys = t£([3 1],[2 5 1]);

- Ts = 1;‘

5— sysd = c2d(sys,1,'zoh');

6— sysm = impulse (sysd);

7

8 FEEEEEHHHHEIHIHHHH%%%%% Model specification HHFHHHHFFHHEEIIHHIEHHHHHH44%S
9— nModel = length(sysm)-15];

10— model = sysm(1l:nModel);

11- model(2) = 0.1323;

2 $model (3) = 0.0821;

13

14 % Controller specification

15— endTime = 100;

16—  [nCV,nMV]= size(sys);

17— ND v = mavnciandTimall nrU\ . b
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We will look at MPC implementation in MATLAB. Shown here is the code which implements an
MPC for a SISO system. First [ have declared the system here as a transfer function with the 3S
plus 1 divided by 2S square plus 5S plus 1 as the transfer function. And I have discretised the
system using a sampling time of 1 second. So TS equal to 1 implies that I have sampled the
system once, for one second and I have computed the impulse coefficient using the inbuilt

function, Impulse.
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9= sysd = c2d(sys,1,'zoh'); ~

6  sysm = impulse(sysd);

7

8 FEELEEEHHHLLE5%%%%%%%%% Model specification HH%%%EEEEELEEEHHLLLLH5488%%%%
9= nModel = length(sysm);

10~ model = sysm(1:nModel);

11-  $model(2) = 0.1323;

12 $model (3) = 0.0821;

8

14 % Controller specification

15= endTime = 100;

16—  [nCV,nMV]= size(sys); I

17— OP.y = zeros(endTime+1,nCV) ;
18— OP.u = zeros(endTime+l,nMV) ;

i)
20 % Tuning parameters
21— Tune.P = 5: v
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Now in the next section, I have declared the model. So as a start we will start with the same
system as the model and see how the performance is. Then we will look at introducing plant

model mismatch and see how the MPC performs. So I will just comment the this line also.
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20 % Tuning parameters ~

Pl Tune.P = 5;

2= Tune.M = 1;

23— Tune.Ts = 1;

24—  Tune.biasc = 'off]'; [
75— Tune.bias = 0;

Ao Tune.lambda = 1;

27-  Tune.objoOpt = 2;

2= Tune.isTerminal = false;

29 % Limits on inputs

30—  Tune.uLL = -0.5%ones (nMV,1);
31- Tune.uUL = 10*ones (nMV,1);
B0

88

34 % Reference trajectory

Bos yref = 2.5;

36— Yr = vref*ones(endTime+1.nCV) : v
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Then I move on to control specification where I specify the length of the simulation as 100
seconds and we initialise the output parameters y and u. Then I move on to tuning parameters
which we can change based on the requirement. So the tuned at P is the prediction horizon, tuned
at N is the control horizon. TS is again sapling time. Bias and biasc are bias correction
parameters. we will start with dim off now and we will see how they affect the controller

performance later.

Lambda is the multiplier used for waiting the objectives which is deviation from setpoint square
plus minimum move. So the subjective option helps us decide which objective to be optimised in

the MPC formulation.
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27— Tune.objopt = 2; g

28—  Tune.isTerminal = false;

29 % Limits on inputs

30—  Tune.uLL = -0.5%ones (nMV,1);

31— Tune.uUL = 10*ones (nMV,1);

32 l
33

34 % Reference trajectory

BbE yref = 2.5;
36— Yr = yref*ones (endTime+1,nCV);
Bf] $Yr = yref*(l-exp(-(l:endTime+1)/5));

39— up = zeros(Tune.M*nMV,1);
40—  uprev = zeros((length(model)-1) ,nMV) ;

42— gamma = length(model) ;

v
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88

34 % Reference trajectory

85 yref = 2.5;

36— Yr = yref*ones (endTime+1,nCV);

87 %Yr = yref*(l-exp(-(l:endTime+l)/5)); I
38

39— up = zeros(Tune.M*nMV,1);
40—~  uprev = zeros((length(model)-1) ,nMV);

42— gamma = length(model);

44 FH5P55P55985%94%%4%%%%%% Prediction matrices $3%%%%3%333543%853545%8%5%%4%%%
45- T = zeros(Tune.P,Tune.M);

46— for i = 1:Tune.P

AT if i<=Tune.M :
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39—  up = zeros(Tune.M*nMV,1);
40—  uprev = zeros((length(model)-1),nMV) ;

11

42— gamma = length(model);

43

44 FEEEHEHEHEIEIEIE559%%%%%% Prediction matrices HHHEHEHEHEHEHEHEIEHEHEHHH5%%%
45— T = zeros(Tune.P,Tune.M);

46— for i = 1l:Tune.P

ills if i<=Tune.M

48— T(i,1:1) = model(i:-1:1);

9= else

50= if i<=length (model)

Sils T(i,1:(Tune.M-1)) = model(i:-1:(i-Tune.M+2));

52= T(i,Tune.M) = sum(model ((i-Tune.M+1):-1:1));

58= else

RA— + = i-lanath(madal) * b
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tofili= up_s = zeros ( (length (sysm)-1) ,nMV) ;

82 I\
83 $H555545595595599%%9%%% Start controller $5%55%555555545543595595595%595%%%%

84— for i = l:endTime

9= U = runMPC(Yr (i) ,model, Tune,uprev,up) ;

86— OP.u(i,:) = U(1:nMV);

Bills vored = model'*[U(1:nMV) ;uprevl; Y
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Now the then I have specified the lower and upper limits for input which are specified as minus
0.5 to 10. Then I declare reference trajectory which is the setpoint as of now as 2.5. And I declare
such some internal variables. Now because we are using linear time invariant models, the
matrices multiplying the decision variables uk to uk plus m minus 1 and the constant matrix are
time invariant. Because of that, I precompute those matrices called T and S in this section and I

store it in the structure tune.
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81— up s = zeros((length(sysm)-1),nMV);

82

83 355595994599 %94%4%%9%% Start controller $%%%%%%%%%%%5%%%88%5%5%%988%5%%9%4%%%%
84— /for i = 1l:endTime

85— U = runMPC(Yr(i) ,model, Tune,uprev,up);
86— OP.u(i,:) = U(l:nMV);

&1 ypred = model'*[U(1l:nMV) ;uprev];

88— yact = sysm‘*[U(l:nMV)l;up_s];

69— if Tune.biasc

o0s Tune.bias = yact-ypred;

Olll end

= OP.y(i+l,:) = yact;

98'= up = repmat(OP.u(i,:),Tune.M,1);

94— uprev = [U(l:nMV);uprev(l:end-1)];

95— up s = [U(l:nMV) ;up s(l:end-1)];

96— -end

97

v
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These are done apriory so that the computation time is reduced. Now runMPC is the functional
which runs the optimisation for one iteration M provides solution from uk to uk plus m minus 1
and those values are stored in the variable u of which we will just select the first few first input
variable, first-time instant input variables and apply it to the system. Notice that I have computed
y predicted as well as y actual using model and system coefficients. This is to generalise the case
where we plant model mismatch. So in case of plant model mismatch, predicted y and the actual

y will be different.

So we will have to correct for that bias in a in real-time fashion. So that has to be updated in the

MPC formulation.
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99—  figure(l);
100-  plot(0:endTime,Yr,'r-');
(00 hold on;
102—  plot(0:endTime,OP.y);
103—  xlabel ('Time');
104—  ylabel('Output y');
105—-  title('Performance of MPC');
106—  legend('Reference trajectory','System Response');
107 I
108—  figure(2);
109—  plot(0:endTime-1,0P.u(l:end-1));
110—  xlabel('Time');
111-  ylabel('Input u');
112—  title('Input profile'); v
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1 function U = runMPC (yref, Model,Tune,OP,u0) A
2— Ull = repmat(Tune.uLL,Tune.M,1); [

3— Uul = repmat(Tune.uUL,Tune.M,1);

4-  opt = optimset('TolFun',6le-6,'TolX', 6le-6,'Display','Iter');

5—  if Tune.isTerminal

6— Aeq = Tune.T(end,:);

7- beq = yref(l,:)-Tune.S(end,:)*0P;

i [U,~,~,~] = fmincon (@ (U)MPCob7j (U,Model, Tune,yref,OP) ,u0, [],[],Aeq,}

9— else
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So in order to do that, I have computed both predicted y and the actual y. The final section of the
code consists of plotting the results and correspondingly I have named the trajectories and given
labels for y, x and titles. Let us look at how runMPC is configured so that we are sure about the
coding. So here, you can see the runMPC function. It takes reference y, the model parameter as

model, tuned structure as tuned, OP is the previous iteration previous time instant input variable.

These are used to compute the constant which is part of MPC formulation and the u not is the

initial condition or initial guess for the optimisation. In the first 2 lines, I have created a matrix



containing the input lower limit and upper limits repeated m times. In order to do that, I have

used MATLAB function, repmat.
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7—  beq = yref(l,:)-Tune.S(end,:)*OP;
8= [U,~,~,~] = fmincon (@ (U)MPCobj (U,Model, Tune,yref,0P) ,ul, [1,[],Req,}

9- else

illes I[U,~,'~-,~] = fmincon (@ (U)MPCobj (U,Model , Tune,yref,OP) ,u0, [],[], |

11= | end

12

13

s “end

15

16 function f = MPCobj (U,Model, Tune,yref,OP) i
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And I have also given a provision for specifying terminal constraint which is u of k plus p equals
to y setpoint which we will do in a later case. So now we will be running this case where we

have no constraints other than limits.
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24— else K
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2= case 1
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Now this MPC objective function computes the MPC objective which is y minus y setpoint

whole square times whole square summation y minus y setpoint whole square for I equals to k
plus 1 to k plus p. And similarly we have summation u of k plus i whole square where i runs
from 0 to m minus 1. So that is calculated here. In order to compute yp, we use that matrices
which we computed as T and S here. T times u. u is the decision variables containing u of k to u

of k plus m minus 1 ad OP is the variable containing previous iteration u values.

So we will have YP as a vector of P output variables and then we update the bias here by
constructing a vector of P values repeated either as Os or using the constant which is computed in
the previous iteration. Then we have 2 cases where in one case, we do not have this summation u
u of k plus 1 whole square and in the other case where we have summation u of k plus i whole

square, the effect of this will be easily seen later.
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c2d(sys,1,'zoh'); I

555555859 %%%5%9%%%%% Model specification $3%%%%%5%8%5%45%8%5585%8%%%4%%%
nModel = length(sysm);

model = sysm(1l:nModel);

$model (2) = 0.1323;

$model (3) = 0.0821;

% Controller specification
endTime = 100;
[nCV,nMV]= size(sys);

ND v = mavnciandTimall nrU\ . 1%
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Let us move on and run the code. So this is the function that has to be studied. This is the script

we have to run in order to see the performance of MPC. Let us run it. So now you can see that
the system reaches the setpoint fairly quickly, within see 10 to 15 seconds. We can zoom in and
see. So around 15 second it reaches to 0.5 and stays there. Notice the input variation. It starts

from 3.3, goes down to 2.5. So it has 0.8 as the variation.
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17—  OP.y = zeros(endTime+1,nCV) ;
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119
20 % Tuning parameters
21— Tune.P = 5;
22— Tune.M =1;
23— Tune.Ts = 1;
Pl Tune.biasc = 'off';
25—  Tune.bias = 0;
26—  Tune.lambda = 1;
27—  Tune.objOpt = 2;
28—  Tune.isTerminal = false;
29 % Limits on inputs
80= Tune.uLL = -0.5%ones (nMV,1) ;
Sill= Tune.uUL = 10*ones(nMV,1);
32 v
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Now without closing this we window, I am going to just change the type of objective which we

have used. So this, the objective we have used did not have the summation of u square. So if if
we just change the objective, how will the system perform is what we are going to look at now.
Now you can see that initially the whole variation was around 3.3 to 2.8 which was 0.5 and here
also it is similar but the output since the initial input was 3.3 at that time, the output was able to

reach 2.5. But since we have minimal variation in the input as a objective, there is a bias in the
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995  figure(l);
100—- plot(0:endTime,Yr,'r-');
101-  hold on;
102— plot(0:endTime,OP.y) ;
103—  xlabel('Time');
104—  ylabel ('Output y');
105—  title('Performance of MPC');
106—  legend('Reference trajectory','System Response');
107
108—  figure(2);
109— plot(0:endTime-1,0P.u(l:end-1)); I
110
111-  xlabel('Time');
112—  ylabel('Input u');
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So we can tune that by tuning this lambda. We will put minimal weight to the 2™ term which is
summation u square. Let us see how that works. Now you can see the response actually reach the

setpoint and the variation is like 3.3 to 2.5 which was the previous variation also.
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9- nModel = length(sysm);

10— model = sysm(1l:nModel) ;

il $miodel (2) = 0.1323;

12 %model (3) = 0.0821;

13

14 % Controller specification
5= endTime = 100;

6= [nCV,nMV]= size(sys);

17— OP.y = zeros(endTime+1,nCV);
18— OP.u = zeros(endTime+l,nMV) ;
19

20 % Tuning parameters

2= Tune.P = 5;

2= Tune.M = 1;

23= Tune.Ts = 1;

2= Tune.biasc = 'off';
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Now let us look at introducing plant model mismatch and how the system performs. I will just
change the 2™ parameter to say 0.1323. So what we are saying is all the parameters other than 2™
term in the model is estimated properly. This particular coefficient is estimated in a wrong way.
So if we do that without the bias correction, how will the performance be? Now you can see, we
have oscillatory performance. This oscillation is because of the constraint which is being forced
in the object optimisation function. You can see that it becomes minus 0.5 for 2 seconds and then

it goes back. So this is the reason why the response is oscillatory.



(Refer Slide Time 20:33)
4

MATLAB R2016 - academic use

RS P Ic

T —

G'QE i »» Professor Fies ¥ Pr v P
Current Folder ® (7 Editor - Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5_6\runMPC.m ©
0 Name~ | runMPCm > \'H Sie
& woiltippx 24— | else -
@ Tutorial 05.pptx "l
Bawrcn  ||25= b=repmat (zeros (nCV,1) ,Tune.P,1) ; b
i unMPCasy n
T roawning 1x 26— | end e
' Dynamic_decou. 24x1 do.. 241
) arlerm 21 "
@dlesy 98— gwitch Tune.objOpt ul
- I st
2% L 523 do.. 523

30= f = (Yp+b-yref) '* (Yp+b-yref)+Tune.lambda* (U'*U) ; m "

X i
3Sill= case 2 2411 do.. 24|

00.132. 51

B2= f = (Yp+b-yref) '* (Yp+b-yref) ; 1 ™

I trct 11

33= |end 5000 11

05000 11
34— “end 2301 do.. 234
mh 2341 do... 23x1|
Command Window ;:gz :::
it 22 ctriler 1011 d.. 1014

2 view det

>> ctrller o

‘ s fe>> 3

4 MATLAB R20163 - scademic use -5
E 7]

@ 5 L v 0 v Professor Files ¥ ProfRaghu ¥ TARecording  Manikandan ¥ Totorial 5.6
Current Folder @ | Editor - runMPCm

) Nome || model %] spm |
@ Tutoral 06pptx |FF 2411 double
@ Tutorial 05 pptx L) 3 n 5 6 7 8 )
woMecm 7
o unMPCasy [osd
2[ o
St BT
' Dynamic decou.. 24e1 do.. 241
) atlecm 40053 1 "
& cilecasy 5 009 4w
6 00 i el
M one I strct
B oond Slxiildo 5123
: A
9| 0016 Wi W
10 00129 241 do.. 241
1 00104 00.132.. 561
12 00083 1 "
13 00067 A strct 11
BT 05000 11
15 00043 ;]3%:0 ;;‘
L e
" 1 do.
Details. 1209 11
Command Window 15396 1
S 22 clriier 101x1 d.. 101
 file to view det
>> ctrller o
< > f& >> 2

Sk ane dhag fo o

o




# Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\ctrllerm -8

PUBLISH

g [ A e el & . 3 @@ms«m&

mmmum' qemvoumml'x_i

9—  nModel = length(sysm); i

10— model = sysm(l:nModel) ;
11-  model(2) = 0.]323;
12 $model (3) = 0.0821;

14 % Controller specification
15— endTime = 100;

16—  [nCV,nMV]= size(sys);

17— OP.y = zeros(endTime+1,nCV);
18— OP.u = zeros (endTime+l,nMV) ;

20 % Tuning parameters
Pillg Tune.P = 5;
P2 Tune.M = 1;
23= Tune.Ts = 1;

24—  Tune.biasc = 'off';
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The actual model funct1on of the 2™ constant has the value of 0.6 sorry, 0.6323. So when the

model is changed, the 2™ coefficient is changed by 0.5, we have oscillatory response.
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25—  Tune.bias = 0;
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27—  Tune.objOpt = 1;

28—  Tune.isTerminal = false;

29 % Limits on inputs

30—  Tune.uLL = -0.5%ones (nMV,1) ;

31— Tune.uUL = 10*ones (nMV,1);

34 % Reference trajectory

85 yref = 2.5;

36— Yr = yref*ones(endTime+l,nCV);

37 $Yr = yref*(l-exp(-(l:endTime+l)/5));
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30—  Tune.uLL = -0.5%ones (nMV,1) ;

31— Tune.uUL = 10*ones (nMV,1);

89

33

34 % Reference trajectory

35—  yref = 2.5;

Bo= JYr = yref*ones (endTime+1,nCV) ;

B %Yr = yref*(l-exp(-(l:endTime+l)/5));
38

39— up = zeros(Tune.M*nMV,1);

40—  uprev = zeros((length(model)-1) ,nMV) ;

41 o
42— gamma = length(model) ;

43

44 545559 994%5%9999%9%%9%%%%% Prediction matrices $%%%%%%%%%%%3%%%%99%5%%9%9%4%%%%

45— T = zeros(Tune.P,Tune.M);
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We can change this to say 0.3323 where with we will have smaller variation than the previous
case. We will have fairly stable response. You can see that this green curve goes to stable and it
reaches the setpoint but if we zoom in, we can sorry. If we zoom in, so you can see that the green
curve has a deviation from 2.5. Let us close this and we will turn on the bias correction and see
how this works. So we have like 0.1 sorry 0.015 as the bias. It is still not reaching the setpoint.

So we will have to tune depending on how different the model is.

The other way of eliminating this plant model mismatch is to add filters like Kalman filters
which estimates the states online using measurements. We can tune the filter to have optimal
performance and then we can couple the filter implementation along with MPC so that we will

have better control.
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Next next let us at when the reference trajectory is changing how the system will respond? So we
will change the reference trajectory as a first order response, first order response with sometime
constant as 5 seconds and we will use the same model as the system and see how the system
responds. So the idea is we are not restricted to using a single set point. We can give a reference
trajectory which is a function of time and we can still control the system fairly, easily. So you can
see that the reference trajectory is a first order response and the system was able to reach the

trajectory.
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We can try changing m which I have put it as 1. Let us put it as 3 so that we will have more room
for optimisation. So in that case, the variation will become smoother and easier compared to the
case where it is 1. So the orange curve is the new cover which uses one setpoint and the
corresponding curve is here. So you can see that it is kind of smooth. We can increase the puff
prediction horizon together with control horizon to get a better performance. So in that case, we
will sorry let us see here. So in that case we will get easier better approximations and hence we

will get better control. Now we have looked at MPC implementation in MATLAB.
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We can do other customisations like we can add weights to different elements present in this as
well as this. So that will advise the optimiser to put more weightage towards that prediction or
less weightage towards that prediction. So we already have a tuning parameter lambda
multiplying this. So based on which we we advise the optimiser to weight this the 2™ term such

that the first term is either more weight, given more weightage given less weightage.

We can also add other constraints like y of k plus i lying between y of upper limit to y of lower
limit, sorry y of lower limit to upper limit. Now this constraint maybe these constraints may not
be achievable because we assume the system to be linear and finite impulse response system. So
there are plant model mismatches. Because of that, we may not exactly match this constraint but
we can give some room for the constraint to be relaxed so that we can still get a feasible solution.

So adding these constraint which is on output limits, we will may lead to visibility problems.



And we can add other constraints like Delta u being within some Delta u limits and other
constraints called coincidence point which will help us reach the set point faster by means of
specifying y hat of k plus i to be equal to some y reference of k plus i. But remember, this is also
an output constraint. Because of that we may have problem of feasibility. The terminal constraint
which is y hat of k plus p equal to y ref of k plus p is easy to implement and it also stabilises the

controller. So we may, we will not have oscillatory response with this constraint present.

So MPC formulation is not just restricted to SISO systems, we can always use or extend this to
MIMO system. In that case the h1 will become a matrix. So we will have h11 h12 all the way up
to hlm and hnl all the way up to hnn. So similarly we will have for each coefficient like this. So
it can be easily extended for MIMO systems. We can as well use nonlinear model to predict y hat
of k plus i. But the problem is if we are to use on nonlinear model, the optimisation becomes
nonlinear optimisation. So we may end up with local optimum rather than global optimum which

1s what we get in by solving this optimisation function.

So like the MPC eformulation by itself does not specify which type of model to use. Other than
that, if we were to if we have to solve optimisation problem in accorded a programming
framework or using linear programming principles, the model has to be linear. Other than that,
there is no specification of how, which type of model to use for prediction. So we can use any
type of model for prediction. We can add constraint on both us, ys, Delta us and other such
constraints which may occur and we can as well customised the objective function based on

minimizing u square or minimising Delta u square, minimising time, et cetera.

So the MPC framework by itself is flexible enough but it has to be customised and each
constraint we add may each equality constraint we we add and its output constraint we add may
make the optimisation infeasible. So the stability and feasibility of this MPC framework has to
be theoretically proved. So like this, we can implement MPC in MATLAB. There is also a
toolbox called MPC Toolbox in MATLAB which is very easy to learn. At the same time, it will

be it will have more diagnostic facilities and other options.

So I have shown here the traditional way of coding the MPC by hand and implementing it for
any system. So with this, I finish MPC tutorial.



