Process Control-Design, Analysis and Assessment
Doctoral Research Scholar Manikandan S
Department of Chemical Engineering
Indian Institute of Technology, Madras
MATLAB Tutorial-Controller Design - Part 3

Welcome everyone to MATLAB tutorial for process control analysis, design and assessment. In
this tutorial, we look at MATLAB implementation of model predictive controller. Just as an
introduction, I will give the formulation of MPC and I will directly go to the code section of
MATLAB and then show you how to code implement model predictive controller and how we

can during the model predictive controller in order to get the performance we require and so on.

(Refer Slide Time 1:00)

MPC - Introduction

* MPC solves an optimization problem online
* Computes optimal input moves

* Can handle constraints

* Easily extendable to MIMO systems

* Computationally time consuming

So the model predictive controller is a controller which solves an optimisation problem online.
So the optimisation problem is formulated such that the model predictive controller uses model
and et can be easily solved. Most of the time, we solve a quadratic program optimisation. It
computes optimal input moves which is optimal in the sense of the objective function we have

chosen. And since this is an optimisation problem, it can handle constraints easily.

And it is easily extendable to MIMO systems. The example I am going to show here is for SISO
system. But the implementation is not restricted to see SISO system. It can be extended to

MIMO. Only that we will have to look at how the structure of each term in the objective function

and prediction oriented terms are in MIMO systems. And MPC is also computationally time-

consuming but the examples which I am going to show here will be fast enough.

But if we have more inputs and more outputs for example like 25 cross 20 system where we have
25 out and we have 20 inputs then such systems will require more computational time in order to

get the optimal in order to calculate the optimal solution for the optimisation.

(Refer Slide Time 2:55)

MPC - formulation

4 M
mUinZ(yW[kH]—y[k+i])2+zu[k+i—1]2
i=1 i=1
Pl +i] = hyulk +i— 1]+ hyulk + i~ 2]+ +hulk +i-y] Vi€ (L,P)
ulk+i]=ylk+M-1] Y i€(M,P)
ult <ulk+i]<ubtv i€ (L,M)

Now this is the formulation where we minimise the objective function where Y sat pine minus Y
hat of K plus whole square and there is a minimum move objective added to the deviation from
setpoint. Now the Y hat of K plus I is computed as an impulse response that finite table’s
response model with gamma coefficients. And we have the constraint that U of K plus I equals to
U of K plus M minus 1 where I is M to P. So what we are essentially saying is though we have

gamma elements of U to optimise, we choose to optimise only M elements.

And on top of it, we have limit constraints on U for all time instants which is from 1 to M.
Notice that I have not specified what P is and what M is and neither have I specified the limits.
So these will depend on individual applications and we may have to modify them to suit to get a
better performance. Look at how we can compute and make the computation easier for us to

implement it in MATLAB.

(Refer Slide Time 4:37)

So we are computing summation I equals to 1 to Py of k plus i reference minus y hat of k plus i
whole square. So we need to compute y of k plus I y hat of k plus i as a function of hl to h
gamma. So we have hl u of k plus h2 u of k minus 1 all the way up to h gamma u of k minus
gamma plus 1. Now in this optimisation function, we have minimized u. This u is constructed
such that it has uk, uk plus 1 all the way up to uk plus m minus 1. So these are the unknowns

which we which we have to optimise.

So this uk is unknown, whereas the rest of the terms are known. So this essentially evaluates to a
constant. And the next term y of k plus 2 will be hl times u of k plus 1 plus h2 times u of k plus
all the way up to h gamma times u of k minus gamma plus 2. This will continue up to y hat of k
plus m minus 1 which is hl times u of k plus m minus 2 all the way up to h gamma times u of k
minus gamma plus and minus 1. And y hat of k plus m is hl times u of k plus m minus 1 all the

way.

Similarly they will have y hat of k plus m plus 1. Here is where because the constraint that u of k
plus m equals to u of k plus m minus 1. Because of that we will have h1 plus h2 times u of k plus
m minus 1 plus all the way. So finally we will have y hat of k plus p which is hl to h into u of k
plus m minus 1 and etc. So we can notice the general structure where we have hl, h2 hl, h3 h2

h1, like this times u plus some known matrix which we can formulate.

(Refer Slide Time 8:17)
a

Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m -

PUBLISH

GRET $x | =EEAT B D H g
1y Compare v G GoTo v Comment % g3
New Open Save i Breakports R Rwnand | Adance Runand
v v v Py A Find v ndent ;] i) v v Adae Time
RE NAVIGATE EDT BREAKPOINTS. RUN
— -
s clear; A

2 FEEHEEFHHHEIHIHHH4%%%%% System specfication HHFHHHHFFHHEEIIHHIEHHIHHHH%S
B sys = t£([3 1],[2 5 1]);

- Ts = 1;‘

5— sysd = c2d(sys,1,'zoh');

6— sysm = impulse (sysd);

7

8 FEEEEEHHHHEIHIHHHH%%%%% Model specification HHFHHHHFFHHEEIIHHIEHHHHHH44%S
9— nModel = length(sysm)-15];

10— model = sysm(1l:nModel);

11- model(2) = 0.1323;

2 $model (3) = 0.0821;

13

14 % Controller specification

15— endTime = 100;

16— [nCV,nMV]= size(sys);

17— ND v = mavnciandTimall nrU\ . b

saipt Ind Col 8
€ B 9 Al - = . 120 M6 1219

We will look at MPC implementation in MATLAB. Shown here is the code which implements an
MPC for a SISO system. First [have declared the system here as a transfer function with the 3S
plus 1 divided by 2S square plus 5S plus 1 as the transfer function. And I have discretised the
system using a sampling time of 1 second. So TS equal to 1 implies that I have sampled the
system once, for one second and I have computed the impulse coefficient using the inbuilt

function, Impulse.

(Refer Slide Time 9:01)
a

Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\ctrllerm* -1 < |

PUBLISH

g EIT™ g2 =986 B DB e
L Compare v fGoTo v Comnent % 5 73 v

MNew Sawe Breakpoints R Rwnand Adance Runand
v o?' v P APy e || e g M = MH Time
AE HAVGATE & BREAGONTS an
9= sysd = c2d(sys,1,'zoh'); ~

6 sysm = impulse(sysd);

7

8 FEELEEEHHHLLE5%%%%%%%%% Model specification HH%%%EEEEELEEEHHLLLLH5488%%%%
9= nModel = length(sysm);

10~ model = sysm(1:nModel);

11- $model(2) = 0.1323;

12 $model (3) = 0.0821;

8

14 % Controller specification

15= endTime = 100;

16— [nCV,nMV]= size(sys); I

17— OP.y = zeros(endTime+1,nCV) ;
18— OP.u = zeros(endTime+l,nMV) ;

i)
20 % Tuning parameters
21— Tune.P = 5: v

saipt In 11 Col 2

[« G @, 120 G 1219

Now in the next section, I have declared the model. So as a start we will start with the same
system as the model and see how the performance is. Then we will look at introducing plant

model mismatch and see how the MPC performs. So I will just comment the this line also.

(Refer Slide Time 9:23)
a

Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\ctrllerm* -] x|

EDTOR PUBLISH vew FEPEREEER - -
- J Find Files. Insent kg v . > 4 ”
RN TR & WEA- [D B oot
L Compare v G GoTo v Camment % 3 43
New Open Sawe Breakgoits R Rand | Adace Ruand
v v v P R e [g e v Vi A o
ne TAGATE an oS AN
20 % Tuning parameters ~

Pl Tune.P = 5;

2= Tune.M = 1;

23— Tune.Ts = 1;

24— Tune.biasc = 'off]'; [
75— Tune.bias = 0;

Ao Tune.lambda = 1;

27- Tune.objoOpt = 2;

2= Tune.isTerminal = false;

29 % Limits on inputs

30— Tune.uLL = -0.5%ones (nMV,1);
31- Tune.uUL = 10*ones (nMV,1);
B0

88

34 % Reference trajectory

Bos yref = 2.5;

36— Yr = vref*ones(endTime+1.nCV) : v
saipt In 24 Col 18

a W o KN "€ w120 w1220

Then I move on to control specification where I specify the length of the simulation as 100
seconds and we initialise the output parameters y and u. Then I move on to tuning parameters
which we can change based on the requirement. So the tuned at P is the prediction horizon, tuned
at N is the control horizon. TS is again sapling time. Bias and biasc are bias correction
parameters. we will start with dim off now and we will see how they affect the controller

performance later.

Lambda is the multiplier used for waiting the objectives which is deviation from setpoint square
plus minimum move. So the subjective option helps us decide which objective to be optimised in

the MPC formulation.

(Refer Slide Time 10:33)
a

Di\Professor Files\Prof.Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m*

27— Tune.objopt = 2; g

28— Tune.isTerminal = false;

29 % Limits on inputs

30— Tune.uLL = -0.5%ones (nMV,1);

31— Tune.uUL = 10*ones (nMV,1);

32 l
33

34 % Reference trajectory

BbE yref = 2.5;
36— Yr = yref*ones (endTime+1,nCV);
Bf] $Yr = yref*(l-exp(-(l:endTime+1)/5));

39— up = zeros(Tune.M*nMV,1);
40— uprev = zeros((length(model)-1) ,nMV) ;

42— gamma = length(model) ;

v

saript n 24 Col 18

. 1) 6 1220

Di\Professor Files\Prof.Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m" -8

88

34 % Reference trajectory

85 yref = 2.5;

36— Yr = yref*ones (endTime+1,nCV);

87 %Yr = yref*(l-exp(-(l:endTime+l)/5)); I
38

39— up = zeros(Tune.M*nMV,1);
40—~ uprev = zeros((length(model)-1) ,nMV);

42— gamma = length(model);

44 FH5P55P55985%94%%4%%%%%% Prediction matrices $3%%%%3%333543%853545%8%5%%4%%%
45- T = zeros(Tune.P,Tune.M);

46— for i = 1:Tune.P

AT if i<=Tune.M :

saript Ln 24 Col 18

= . 3 NG 1221

D:\Professor Files\Prof.Raghu\TA Recording\Manikandan\Totorial 5_6\ctrllerm*
PUBLISH

L}fgﬂwmnh €4 e e - F_;i [Z L(r_)" @Rmmm@

Compare v G GoTo v Comment % g5
b ‘i‘ L8 J Breakpoints R Runand p_qua Runand
v v v @ity (Fd v den [f] e g v v Adance Time.
A HAVGATE e SREACOITS (]
=
38 3

39— up = zeros(Tune.M*nMV,1);
40— uprev = zeros((length(model)-1),nMV) ;

11

42— gamma = length(model);

43

44 FEEEHEHEHEIEIEIE559%%%%%% Prediction matrices HHHEHEHEHEHEHEHEIEHEHEHHH5%%%
45— T = zeros(Tune.P,Tune.M);

46— for i = 1l:Tune.P

ills if i<=Tune.M

48— T(i,1:1) = model(i:-1:1);

9= else

50= if i<=length (model)

Sils T(i,1:(Tune.M-1)) = model(i:-1:(i-Tune.M+2));

52= T(i,Tune.M) = sum(model ((i-Tune.M+1):-1:1));

58= else

RA— + = i-lanath(madal) * b

script n 24 Col 18

oL 12 NG 1221

a2 D:\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m*
EDITOR PUBLISH !

w g am - e L MBS [ﬂ@ms«m&f

Compare v G)fGoTo v Comment %, ;
o o s L~ T A

v v v @Ry (F vy e [e i TG mﬁm oo
RE NAVIGATE EDT BREAKPOINTS. RN i
s end A
2= end
8= k=k+1;
74- ~end
{5
6= Tune.T = T;
171- Tune.S = §;
18
79
80

tofili= up_s = zeros ((length (sysm)-1) ,nMV) ;

82 I\
83 $H555545595595599%%9%%% Start controller $5%55%555555545543595595595%595%%%%

84— for i = l:endTime

9= U = runMPC(Yr (i) ,model, Tune,uprev,up) ;

86— OP.u(i,:) = U(1:nMV);

Bills vored = model'*[U(1:nMV) ;uprevl; Y

saript n 24 Col 18

w . 120 N 1221

Now the then I have specified the lower and upper limits for input which are specified as minus
0.5 to 10. Then I declare reference trajectory which is the setpoint as of now as 2.5. And I declare
such some internal variables. Now because we are using linear time invariant models, the
matrices multiplying the decision variables uk to uk plus m minus 1 and the constant matrix are
time invariant. Because of that, I precompute those matrices called T and S in this section and I

store it in the structure tune.

(Refer Slide Time 11:24)
z

D:\Professor Files\Prof.Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m* - oKl

EDITOR PUBLISH VEW WH 40 hgw@@ x
- | Find Fi Vel v] | s
@ Qe @ =EEA B D B s B
L/ Compare v G GoTo v Comment % g 43
New Open Save g Breakpoints Run Rwnand wmﬂ Runand
v v v @Ry (v bden [iy M v Adance Tite.

AE NAVGATE e BREAPOITS. RN

81— up s = zeros((length(sysm)-1),nMV);

82

83 355595994599 %94%4%%9%% Start controller $%%%%%%%%%%%5%%%88%5%5%%988%5%%9%4%%%%
84— /for i = 1l:endTime

85— U = runMPC(Yr(i) ,model, Tune,uprev,up);
86— OP.u(i,:) = U(l:nMV);

&1 ypred = model'*[U(1l:nMV) ;uprev];

88— yact = sysm‘*[U(l:nMV)l;up_s];

69— if Tune.biasc

o0s Tune.bias = yact-ypred;

Olll end

= OP.y(i+l,:) = yact;

98'= up = repmat(OP.u(i,:),Tune.M,1);

94— uprev = [U(l:nMV);uprev(l:end-1)];

95— up s = [U(l:nMV) ;up s(l:end-1)];

96— -end

97

v
saript n 24 Col 18

w . 120 N 122

These are done apriory so that the computation time is reduced. Now runMPC is the functional
which runs the optimisation for one iteration M provides solution from uk to uk plus m minus 1
and those values are stored in the variable u of which we will just select the first few first input
variable, first-time instant input variables and apply it to the system. Notice that I have computed
y predicted as well as y actual using model and system coefficients. This is to generalise the case
where we plant model mismatch. So in case of plant model mismatch, predicted y and the actual

y will be different.

So we will have to correct for that bias in a in real-time fashion. So that has to be updated in the

MPC formulation.

(Refer Slide Time 12:31)
a

Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m* -0 “

EDITOR PUBLISH VEW (P =0 © =
o g Em= s =Rk (3 D H (3] RunSecton 04

Mmmamnvqmuvwm%ng Breskpoits n;.Rmm Adance Rinand

v v v @iy (R e] g o - e Tine

I - HAVIGATE £ BREACPONTS RN

BESy end =

of

98

99— figure(l);
100- plot(0:endTime,Yr,'r-');
(00 hold on;
102— plot(0:endTime,OP.y);
103— xlabel ('Time');
104— ylabel('Output y');
105—- title('Performance of MPC');
106— legend('Reference trajectory','System Response');
107 I
108— figure(2);
109— plot(0:endTime-1,0P.u(l:end-1));
110— xlabel('Time');
111- ylabel('Input u');
112— title('Input profile'); v
saript n 24 Col 18
d W 9o KN "€ w . 12 N 122

4 MATLAB R2016a - academic use -] x |
PUBLISH VEW RHLiGLael @J rch Documentation pH

%JHNMM €4 b= £ - £3 !2 lﬂ @Rms«um\ly

L Corpare v G GoTo v Comment % i3 3

New Open Save " Breakports Run Runand | Adance Runand
v v v 4P v Fnd v den 5]) |y v v Adance Time.
AE NAVIGATE Eor BREAKPOINTS. RUN
€% EE L v Uses ¥ Admin ¥ Documents ¥ MATLAB M.
[T SCON ¥ Editor - D:\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5_6\runMPC.m ® ®
Name~ nMPCm % | 4]
-
1 function U = runMPC (yref, Model,Tune,OP,u0) A
2— Ull = repmat(Tune.uLL,Tune.M,1); [

3— Uul = repmat(Tune.uUL,Tune.M,1);

4- opt = optimset('TolFun',6le-6,'TolX', 6le-6,'Display','Iter');

5— if Tune.isTerminal

6— Aeq = Tune.T(end,:);

7- beq = yref(l,:)-Tune.S(end,:)*0P;

i [U,~,~,~] = fmincon (@ (U)MPCob7j (U,Model, Tune,yref,OP) ,u0, [],[],Aeq,}

9— else
10 [U,~,~,~] = fmincon (@ (U)MPCobj (U,Model, Tune,yref,0OP) ,u0,[],[],|
1= end i
Details L y
Command Window ®
ACagemlic License

Select a file to view det

g , fr>

- Ready unhPC 4 Gl 83

. 120 NG 1223

So in order to do that, I have computed both predicted y and the actual y. The final section of the
code consists of plotting the results and correspondingly I have named the trajectories and given
labels for y, x and titles. Let us look at how runMPC is configured so that we are sure about the
coding. So here, you can see the runMPC function. It takes reference y, the model parameter as

model, tuned structure as tuned, OP is the previous iteration previous time instant input variable.

These are used to compute the constant which is part of MPC formulation and the u not is the

initial condition or initial guess for the optimisation. In the first 2 lines, I have created a matrix

containing the input lower limit and upper limits repeated m times. In order to do that, I have

used MATLAB function, repmat.

(Refer Slide Time 14:07)

MATLAB R2016a - academic use -] |

PUBLISH

GpEE. gx =250 § D E pem

) Compare v jGoTo v Comment % i3 43

New Open Sawe Besigonts R Rinend | Adance Rand
v v v &P A Find v ndent)] i) iy v v Adance Time
AE HAVGATE e EFEACOTS an
@ EE L v > Users » Admin b Documents » MATAB g7
Current Folder ®

Name

(] Aey = lune.l(enu,.j; -

7— beq = yref(l,:)-Tune.S(end,:)*OP;
8= [U,~,~,~] = fmincon (@ (U)MPCobj (U,Model, Tune,yref,0P) ,ul, [1,[],Req,}

9- else

illes I[U,~,'~-,~] = fmincon (@ (U)MPCobj (U,Model , Tune,yref,OP) ,u0, [],[], |

11= | end

12

13

s “end

15

16 function f = MPCobj (U,Model, Tune,yref,OP) i
Details < 2

Command Window @

ACagemic License R

Select a file to view det
< s fi>> Ve

* Ready unMPC In4 Col 43

@ 120 e 1224

And I have also given a provision for specifying terminal constraint which is u of k plus p equals
to y setpoint which we will do in a later case. So now we will be running this case where we

have no constraints other than limits.

(Refer Slide Time 14:35)

MATLAB R2016a - academic use -8

PUBLISH VEW PLUiGEacl @w h Documentator ,uH
o7 Jﬂu‘nmnu £ et @ £] - £3 l2 Lﬂ 2] RunSecton d.‘f
m%mww*vgm"'wﬁjd Breakpoints R Rwnand | Advance Runand
v v v 4Py Find ¥ ndent 5] o] i v v Adane Time.
AE MNAVIGATE EOT BREAKPOINTS RUN
@ EE L r Cor Users » Admin » Documents ¥ MATLAB M
[N SCMON B Editor - D:\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\runMPC.m* ® ®
Name~ nMPCm* | Name,
2B b = repmat(lune.blas,lune.p,1); =0
24— else
25w b=repmat (zeros (nCV,1) ,Tune.P,1);
26— end
24l
28— switch Tune.objOpt
20/ case 1
80s f = (Yp+b-yref) I'* (Yp+b-yref) +Tune. lambda* (U' *U) ;
3l case 2
8ois f = (Yp+b-yref) '* (Yp+b-yref) ;
33— end "
Details | 2
Command Window ®
ACagemlicC License

Select a file to view det

g , frs> |
* Ready unMPC ln 4 Col 56

= . 12 w6 1225

4 MATLAB R20162 - acadlemic use - oKl

PUBLISH VEW @Q;;_gu@@[uu umentation pH
. JFindFies et TR] I
gd [fg W REE- B [%\i@ﬁms«nm\f
L Compare v G GoTo v Comment % g3 3
New Open Sae 5 Bedlpons R Rnang |4 Adane Rnand
v v v @Piny (P v b] i 4 v Adae Time

i HAVGATE Gl BREAKPOITS RN

€ HE L » C» Users » Admin » Documents » MATLAB M.

[QUENSTERON % Editor - D:\Professor Files\Prof.Raghu\TA Recording\Manikandan\Totorial 5 6\runMPC.m*
Name nMPCmt % | 4

| Name

24— else K
25 b=repmat (zeros (nCV,1) ,Tune.P,1);
26— end

24l
28— switch Tune.objOpt

2= case 1
30— f = (Yptb-yref) '* (Yp+b-yref)+Tune.lambda* (U'*U) ;
Sl case 2
87 f = (Ypt+b-yref) '* (Yp+b-yref) ;
33— end
34— end
Details v I 2
Command Window ®
ACagemlic License
Select a file to view det
g s fi>> ks

- Ready inMPC In 4 Col 5

=L D) NG 1226

Now this MPC objective function computes the MPC objective which is y minus y setpoint

whole square times whole square summation y minus y setpoint whole square for I equals to k
plus 1 to k plus p. And similarly we have summation u of k plus i whole square where i runs
from 0 to m minus 1. So that is calculated here. In order to compute yp, we use that matrices
which we computed as T and S here. T times u. u is the decision variables containing u of k to u

of k plus m minus 1 ad OP is the variable containing previous iteration u values.

So we will have YP as a vector of P output variables and then we update the bias here by
constructing a vector of P values repeated either as Os or using the constant which is computed in
the previous iteration. Then we have 2 cases where in one case, we do not have this summation u
u of k plus 1 whole square and in the other case where we have summation u of k plus i whole

square, the effect of this will be easily seen later.

(Refer Slide Time 16:28)

Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m
PUBLISH

ﬂ’ ™ E (g Find s g

.| Conpare v yeoro-

7!

e 3 i]
1 3 3 5 U "bmm

clear; &
55555859 %%%5%9%%%%% System specfication $3%%%35%3%5545%855%85%8%%%4%%%
gys = Ef([3 1],02 5 11);

Ts = 1;
sysd =
sysm = impulse (sysd);

c2d(sys,1,'zoh'); I

555555859 %%%5%9%%%%% Model specification $3%%%%%5%8%5%45%8%5585%8%%%4%%%
nModel = length(sysm);

model = sysm(1l:nModel);

$model (2) = 0.1323;

$model (3) = 0.0821;

% Controller specification
endTime = 100;
[nCV,nMV]= size(sys);

ND v = mavnciandTimall nrU\ . 1%
saript n 85 Col 14

. 12 NG 1226

D:\Professor Files\Prof.Raghu\TA Recording\Manikandan\Totorial 5_6\ctrllerm

PUBLISH

ﬂ: ™ E mamnn e

PR =T =)
Figure 1 -0
ﬁ Fle Edit View Inset Tooks Desktop Window Help M
v e DEdS (kA0 L A0 eD 3 Figure? - ol
1= clei . Performance of MPC. Fle Edt View Inset Tools Deskiop Window Help
2 %%%! \ DEds kA ODRL- B 0B D
g8 sys - Syvtem Resporse = Input profile
as Ts i i
B8 sys(2 \ 2
65 sys|i. 31
7 15 ‘ a‘
8 %%y O ‘ = |
98 ol [N 2|
10— mod: | 28t |
05] |
il $mo(.\
12 %Mot q ‘ \
0 2 2 60 8 100 28} \
13 Time. \
14 % Controller SpeciIiCatlion 25—
: 0 2)) 8 100
15— endTime = 100; Time
16— [nCV,nMV]= size(sys);
17— AD w = marnc/anATimail nrU - v

script In 85 Col 14

a Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\ctrllerm
PUBLISH

[JFmieiec e R T ;
W J H &MT Figure 1 = DE
Yo pen Sum P e G Vo it Too Onsiop Wodow 1o bl
AE Dads(RA&09R4- 8 0E e 0 Figure 2 =8
1- cle Performance of MPC Fle Edt View Inset Tooks Deskiop Window Help
2 %% Dade b W809L 48 080
25
3- sys ; X - Input profile
s Ts i /
2 32
BE 8ys| —— Refeence Uajectory
—— System Response
O sys 31
515
il g | I
3 3
8 %% | s |
1 |)
9 nMo 2
10— mod 28
05
11 %o -
12 %o
0 5 10 15 26
13 Time
14 % Controller specirication 25
: 0 2) 60 8 100
15— endTime = 100; Time
16— [nCV,nMV]= size(sys);
17— AD v = mavaclandTimasl nrn - Y

script In 85 Col 14

. 20 G 1227

Let us move on and run the code. So this is the function that has to be studied. This is the script

we have to run in order to see the performance of MPC. Let us run it. So now you can see that
the system reaches the setpoint fairly quickly, within see 10 to 15 seconds. We can zoom in and
see. So around 15 second it reaches to 0.5 and stays there. Notice the input variation. It starts

from 3.3, goes down to 2.5. So it has 0.8 as the variation.

(Refer Slide Time 17:28)
4

Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m -8 n

PUBLISH

e e L M R [ﬂ@wms«m@
Ly Conpare v g GoTo v Comment % g3 /J

e e et L
RE NAVIGATE EDT BREAKPOINTS RUN e
6= [nCV,nMV]= size(sys); Al
17— OP.y = zeros(endTime+1,nCV) ;
18— OP.u = zeros(endTime+l,nMV);
119
20 % Tuning parameters
21— Tune.P = 5;
22— Tune.M =1;
23— Tune.Ts = 1;
Pl Tune.biasc = 'off';
25— Tune.bias = 0;
26— Tune.lambda = 1;
27— Tune.objOpt = 2;
28— Tune.isTerminal = false;
29 % Limits on inputs
80= Tune.uLL = -0.5%ones (nMV,1) ;
Sill= Tune.uUL = 10*ones(nMV,1);
32 v

saript n 85 Col 14
2 W 9 il - =L R we 122

performance.

(Refer Slide Time 18:36)
a

EDITOR PUBLISH VEW

a Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\ctrllerm -8
— —

PUBLISH

[JFimrie ot =] £] w6 T [
W u H &,u—‘— Figure 1 -0 B
tow Open, Sem (i Fe Edt Vew et Toos Desiop Window Hep « &8
AE Dade[hAJO9R4- 8 0E e 3 Figure2 -olE
16 [nc Performance of MPC. File Edit View Insert Tools Desktop Window Help
17~y DEde[k[A809Q 43 08 a0
0 o :ammn:a ajectory
& A o Rosponse 2

2 25 T 23[Input profile
08 3 TR e
ity Tundies ;2 i
2= Tunf 315 { 215
23- Tun S | i
24— Tun i 73

£205
Zom Tun
pes TundBE :
27— Tunc : i3
28— Tun 0 2 0 80 80 100 19

Time
2 [EEmw S e 2 0 60 8 100
30— Tune.uLL = -0.5%ones (nMV,1); Time
31— Tune.uUL = 10*ones (nMV,61);
B2, .
saipt In 27 Gol 16

. 12 w6 1228

Now without closing this we window, I am going to just change the type of objective which we

have used. So this, the objective we have used did not have the summation of u square. So if if
we just change the objective, how will the system perform is what we are going to look at now.
Now you can see that initially the whole variation was around 3.3 to 2.8 which was 0.5 and here
also it is similar but the output since the initial input was 3.3 at that time, the output was able to

reach 2.5. But since we have minimal variation in the input as a objective, there is a bias in the

Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\ctrllerm* -] < |

‘fﬂhdgmm £5 B EH- (D [ﬂ@ﬂmwm&‘f

) Compare w5 GoTo v Comment % 3)

New Save. Breakpoints Run Runand Advance Runand
- ofm v APt v [SUL R RS v - Mam& Time.

ar WA o seneons LR TC————
Yo— end by
97
98

995 figure(l);
100—- plot(0:endTime,Yr,'r-');
101- hold on;
102— plot(0:endTime,OP.y) ;
103— xlabel('Time');
104— ylabel ('Output y');
105— title('Performance of MPC');
106— legend('Reference trajectory','System Response');
107
108— figure(2);
109— plot(0:endTime-1,0P.u(l:end-1)); I
110
111- xlabel('Time');
112— ylabel('Input u');

scipt 1n 110Col 1

@ 120 w1228

So we can tune that by tuning this lambda. We will put minimal weight to the 2™ term which is
summation u square. Let us see how that works. Now you can see the response actually reach the

setpoint and the variation is like 3.3 to 2.5 which was the previous variation also.

(Refer Slide Time 19:21)
4

Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\ctrller.m -] x|

EDITOR PUBLISH VEW B . 9ebokK
4 E [gFimdries < wsen (24 fi] ~ £3 p [,:a} [3jfnsen ‘JJ
JCongare » G GoTo v Comment % 3 /7

New Open Save
v v v @Piv v e] o g
RE WAVGATE e BREAPOINTS. A

9- nModel = length(sysm);

10— model = sysm(1l:nModel) ;

il $miodel (2) = 0.1323;

12 %model (3) = 0.0821;

13

14 % Controller specification
5= endTime = 100;

6= [nCV,nMV]= size(sys);

17— OP.y = zeros(endTime+1,nCV);
18— OP.u = zeros(endTime+l,nMV) ;
19

20 % Tuning parameters

2= Tune.P = 5;

2= Tune.M = 1;

23= Tune.Ts = 1;

2= Tune.biasc = 'off';

Breaigoins R Rwand |4 Adence Ruand
v v Adance Time.

scipt In 110Col 9

[) « Kl wo. 120 N 1229

Now let us look at introducing plant model mismatch and how the system performs. I will just
change the 2™ parameter to say 0.1323. So what we are saying is all the parameters other than 2™
term in the model is estimated properly. This particular coefficient is estimated in a wrong way.
So if we do that without the bias correction, how will the performance be? Now you can see, we
have oscillatory performance. This oscillation is because of the constraint which is being forced
in the object optimisation function. You can see that it becomes minus 0.5 for 2 seconds and then

it goes back. So this is the reason why the response is oscillatory.

(Refer Slide Time 20:33)
4

MATLAB R2016 - academic use

RS P Ic

T —

G'QE i »» Professor Fies ¥ Pr v P
Current Folder ® (7 Editor - Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5_6\runMPC.m ©
0 Name~ | runMPCm > \'H Sie
& woiltippx 24— | else -
@ Tutorial 05.pptx "l
Bawrcn ||25= b=repmat (zeros (nCV,1) ,Tune.P,1) ; b
i unMPCasy n
T roawning 1x 26— | end e
' Dynamic_decou. 24x1 do.. 241
) arlerm 21 "
@dlesy 98— gwitch Tune.objOpt ul
- I st
2% L 523 do.. 523

30= f = (Yp+b-yref) '* (Yp+b-yref)+Tune.lambda* (U'*U) ; m "

X i
3Sill= case 2 2411 do.. 24|

00.132. 51

B2= f = (Yp+b-yref) '* (Yp+b-yref) ; 1 ™

I trct 11

33= |end 5000 11

05000 11
34— “end 2301 do.. 234
mh 2341 do... 23x1|
Command Window ;:gz :::
it 22 ctriler 1011 d.. 1014

2 view det

>> ctrller o

‘ s fe>> 3

4 MATLAB R20163 - scademic use -5
E 7]

@ 5 L v 0 v Professor Files ¥ ProfRaghu ¥ TARecording Manikandan ¥ Totorial 5.6
Current Folder @ | Editor - runMPCm

) Nome || model %] spm |
@ Tutoral 06pptx |FF 2411 double
@ Tutorial 05 pptx L) 3 n 5 6 7 8)
woMecm 7
o unMPCasy [osd
2[o
St BT
' Dynamic decou.. 24e1 do.. 241
) atlecm 40053 1 "
& cilecasy 5 009 4w
6 00 i el
M one I strct
B oond Slxiildo 5123
: A
9| 0016 Wi W
10 00129 241 do.. 241
1 00104 00.132.. 561
12 00083 1 "
13 00067 A strct 11
BT 05000 11
15 00043 ;]3%:0 ;;‘
L e
" 1 do.
Details. 1209 11
Command Window 15396 1
S 22 clriier 101x1 d.. 101
 file to view det
>> ctrller o
< > f& >> 2

Sk ane dhag fo o

o

Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\ctrllerm -8

PUBLISH

g [A e el & . 3 @@ms«m&

mmmum' qemvoumml'x_i

9— nModel = length(sysm); i

10— model = sysm(l:nModel) ;
11- model(2) = 0.]323;
12 $model (3) = 0.0821;

14 % Controller specification
15— endTime = 100;

16— [nCV,nMV]= size(sys);

17— OP.y = zeros(endTime+1,nCV);
18— OP.u = zeros (endTime+l,nMV) ;

20 % Tuning parameters
Pillg Tune.P = 5;
P2 Tune.M = 1;
23= Tune.Ts = 1;

24— Tune.biasc = 'off';
i2 B G i saipt In 11 Gol 14
= . D) NG 1231
a Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5_6\ctrllerm -8
PUBLISH ¥
- [Fmpioc oot =1 fe (7] | G ~oorE [
d‘:E = E L.HWT Figure 1 -0 ?
L e Fle Edit View Insert Tools Desklop Window Help + B
B 004l L9 0ves 8 0B e H
9- nMo Performance of MPC 4 Figure2 2 §
10- 4 File Edit View Insert Tools Desktop Window Help 5
o —g*;;f;;";;m:ua s aRo9e s a/08en
11- mod 6 .
. i ” ‘ Input profile
B ‘ ‘ e T
13 C ‘ ‘ i LEEELLL]
U sc Hw ‘H‘ “ SIRImEAN ‘ “‘} \“
15— end g‘ ‘ H H H ‘ ot 1 1111 I I
- ‘H H‘ ‘H‘ ‘H il (I ‘w‘ (!
- op. \ H‘ I H l (R RN A
& |
.l ‘ “} Hl ‘ | \H | | \ I | (T
L \ ““‘ “ “ “‘ ; ““ “‘ ‘ | ‘ | ‘ ‘ ‘
20 $ T ‘0; “ 1:‘\ “M‘M N
- | |
208 Tun T\me oll| 1l ‘ | ‘ | ‘ |
22— Tune.M =1; ; i ‘ ‘
23— Tune.Ts = 1; " 2 @ - & £ e
i
24— Tune.biasc = 'off'; —

script In 11 Col 15

= . D) NG 1231

The actual model funct1on of the 2™ constant has the value of 0.6 sorry, 0.6323. So when the

model is changed, the 2™ coefficient is changed by 0.5, we have oscillatory response.

(Refer Slide Time 21:03)

Il
u x ll

888888888

) Figure 1 -8
Fle Edt View Insert Tooks Desktop Window Help B

Daas [l 09€. a0 en

Performance of MPC
T

29+ ‘ ‘

) Figure 1 -
Fle Edt View Inert Tooks Desktop Window Help N

Ddas [l 09€.- al0Een

Performance of MPC
T T T T
ference trajectory
—— System Response
2841 =1
252 gl
25
>
3
[¢]
248 ‘ & g
246 “ =
244 “ 4
‘ I I I I I I I
30 305 3 35 32 325 B
Time

- S =GEE 5L E e

Compare v G GoTo v Camment

o
9- nModel = length(sysm); ¢ Figure 2 - nn] 2
10— model = sysm(1l:nModel); AL Y ‘"**“‘ Joos »‘f““‘“‘“ Wnis e)
i) =0.3b23; nede & SHeve4- a 08 e
12 %model(3) = 0.0821; g s erfle
13 AHE R LI
14 % Controller specification 7
15— endTime = 100; 6} |
&= [nCV,nMV]= size(sys); st ‘
17— OP.y = zeros(endTime+1,nCV); 54‘
18- OP.u = zeros(endTime+l,nMV); ! ‘
19 q
20 % Tuning parameters il ‘
20 Tuna.P = 5; .
22— Tune.M =1; i ok b
3= Tune.Ts = 1; 0 20 40 - 60 80 100
24— Tune.biasc = 'off';
i i i i script n 11 co\‘\s

. 120 G 1231

"4 Di\Professor Files\Prof.Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m - O R

PUBLISH VEW

Z8s Tune.Ts ”
24— Tune.biasc = 'o H

25— Tune.bias = 0;

26— Tune.lambda = 0.01;

27— Tune.objOpt = 1;

28— Tune.isTerminal = false;

29 % Limits on inputs

30— Tune.uLL = -0.5%ones (nMV,1) ;

31— Tune.uUL = 10*ones (nMV,1);

34 % Reference trajectory

85 yref = 2.5;

36— Yr = yref*ones(endTime+l,nCV);

37 $Yr = yref*(l-exp(-(l:endTime+l)/5));

20— T = mavac (Mana MénMU 1\« %
|saript In 11 Col 15

L b e 23

Di\Professor Files\Prof.Raghu\TA
EDTOR @ Figure 1

(QFndfies G bsei| o Edit View Inert Tools Desklop Window Help Z
T W

- Performance of MPC
251
A Tune.Ts

24— Tune.biasc = 'on| 255]
25— Tune.bias = 0;

26— Tune.lambda = 0.(

27— Tune.objopt = 1; Z24
28— Tune.isTerminal =
29 % Limits on inpul
30— Tune.uLL = -0.5%¢ 245}
31— Tune.uUL = 10%on¢

32 248
33 40 41 2 43 44 45 46
34 % Reference traje Time

BElE yref = 2.5;
36— Yr = yref*ones (endTime+1,nCV);
3 %Yr = yref*(l-exp(-(1l:endTime+1)/5));

W0 — 1 = mavac (Tana MenMU7 1)\ - 2
script n 24 Col 17

. 20 WG 123

a Di\Professor Files\Prof Raghu\TA Recording\Manikandan\Totorial 5 6\ctrllerm -] x|

EDTOR PUBLSH VEW AR TEETO)] © =
— Find Fles Insert TR] k
g g g 2 :"jx"” £3 P L_’E@Rw\wm (04
LiCompare v QjGoTow Commen % i3 43
New Open Save Beaigons Rm Rnant | Adance Rnand
v v v Ry Ry kel] e s - v Ao Time

ne woe | wenvos wn
30— Tune.uLL = -0.5%ones (nMV,1) ;

31— Tune.uUL = 10*ones (nMV,1);

89

33

34 % Reference trajectory

35— yref = 2.5;

Bo= JYr = yref*ones (endTime+1,nCV) ;

B %Yr = yref*(l-exp(-(l:endTime+l)/5));
38

39— up = zeros(Tune.M*nMV,1);

40— uprev = zeros((length(model)-1) ,nMV) ;

41 o
42— gamma = length(model) ;

43

44 545559 994%5%9999%9%%9%%%%% Prediction matrices $%%%%%%%%%%%3%%%%99%5%%9%9%4%%%%

45— T = zeros(Tune.P,Tune.M);

\SJSB;ESuP‘que\"lwnd ; & i script In 11 Col 1
(B KX « KNG wm oL 120 NG 1233

We can change this to say 0.3323 where with we will have smaller variation than the previous
case. We will have fairly stable response. You can see that this green curve goes to stable and it
reaches the setpoint but if we zoom in, we can sorry. If we zoom in, so you can see that the green
curve has a deviation from 2.5. Let us close this and we will turn on the bias correction and see
how this works. So we have like 0.1 sorry 0.015 as the bias. It is still not reaching the setpoint.

So we will have to tune depending on how different the model is.

The other way of eliminating this plant model mismatch is to add filters like Kalman filters
which estimates the states online using measurements. We can tune the filter to have optimal
performance and then we can couple the filter implementation along with MPC so that we will

have better control.

(Refer Slide Time 23:02)
a

PUBLISH VEW

GOl Eme gx =GEET 5 D e

1y Compare v G GoTo v Comment % g3

Di\Professor Files\Prof.Raghu\TA Recording\Manikandan\Totorial 5_6\ctrller.m* -8 “

B e L e
RE NAVIGATE EDT BREAKPOINTS RUN -
30— Tune.uLL = -0.5%ones (nMV,1); &
31- Tune.uUL = 10*ones (nMV,1);
80
83
34 % Reference trajectory
Bom yref = 2.5;
Bom Yr = yref*oneé(endTimeH,nCV);
8y Yr = yref*(l-exp(-(1l:endTime+l)/5));
38
39— up = zeros(Tune.M*nMV,1);
40~ uprev = zeros((length(model)-1) ,nMV);
41
42— gamma = length(model);
43
44 3555955945999 944%%%%%%%% Prediction matrices $%%%%%%%%%93%5%%%%4%5%5%9%%4%%%%
45- T = zeros(Tune.P,Tune.M);
e i i ; Sl i saipt In 37 (n\v\
€ B 9 Al - . 120 w1233

Next next let us at when the reference trajectory is changing how the system will respond? So we
will change the reference trajectory as a first order response, first order response with sometime
constant as 5 seconds and we will use the same model as the system and see how the system
responds. So the idea is we are not restricted to using a single set point. We can give a reference
trajectory which is a function of time and we can still control the system fairly, easily. So you can
see that the reference trajectory is a first order response and the system was able to reach the

trajectory.

(Refer Slide Time 24:08)
a

Di\Professor Files\Prof Raghu\TA \Totorial 5_6\ctrllerm = [
o I - -5 THIITS
L H [QJFinaFies <o o, sl Fie Edit View Insett Tooks Deskiop Window Help 4 Figure 2 -a
P fcorox Comen)3 5| b ARODL 2L B OE fie et View nsent Tools Deskiop Window Help ¥
. - Pint v Find v Indent. ¥ A OORLLY N
) - . e MECDINESCE TR TEILT
12 %model(3) = 0.08: a A ML
13 N/ k
14 % Controller spec / /
15— endTime = 100; g
15} |
16— [nCV,nMV]= size(: 2 ||
17— OP.y = zeros(end! § S
16~ OP.u = zeros(end? | £
i9) |
20 % Tuning paramet¢ % 1f
21- Tune.P = 5; |
22- TuneM=1; 0
0 20 40 60 e
23—~ Tune.Ts = 1; Time 0 2 %) 80 100
24— Tune.biasc = 'on'; Qe

25— Tune.bias = 0;

26— Tune.lambda = 0.01;

27— Tune.objOpt = 1;

nQ— Tiana ieTarminal = falea:

scipt In 22 Col 11
€ B o9 il - = . 120 NG 1235

We can try changing m which I have put it as 1. Let us put it as 3 so that we will have more room
for optimisation. So in that case, the variation will become smoother and easier compared to the
case where it is 1. So the orange curve is the new cover which uses one setpoint and the
corresponding curve is here. So you can see that it is kind of smooth. We can increase the puff
prediction horizon together with control horizon to get a better performance. So in that case, we
will sorry let us see here. So in that case we will get easier better approximations and hence we

will get better control. Now we have looked at MPC implementation in MATLAB.

(Refer Slide Time 25:45)

MPC - formulation

)

Wt
i
P M \A’\
2
mUmZ(ySv[k 1) = 9l +)2 +%zu[k yi-1p
i=1 :

i=1

Jlk+i] =hulk+i-1]+hpulk +i-2]+~+hulk+i-y] Vie(1P)
ulk+il=ulk+M-1] vV ieM,P)
utt <ufk+i) <ultv i€ (1,M)

J4gmid e J e O‘M
= — i) 3
o5 G R
s ~ Y o
+ ne
Q
G

We can do other customisations like we can add weights to different elements present in this as
well as this. So that will advise the optimiser to put more weightage towards that prediction or
less weightage towards that prediction. So we already have a tuning parameter lambda
multiplying this. So based on which we we advise the optimiser to weight this the 2™ term such

that the first term is either more weight, given more weightage given less weightage.

We can also add other constraints like y of k plus i lying between y of upper limit to y of lower
limit, sorry y of lower limit to upper limit. Now this constraint maybe these constraints may not
be achievable because we assume the system to be linear and finite impulse response system. So
there are plant model mismatches. Because of that, we may not exactly match this constraint but
we can give some room for the constraint to be relaxed so that we can still get a feasible solution.

So adding these constraint which is on output limits, we will may lead to visibility problems.

And we can add other constraints like Delta u being within some Delta u limits and other
constraints called coincidence point which will help us reach the set point faster by means of
specifying y hat of k plus i to be equal to some y reference of k plus i. But remember, this is also
an output constraint. Because of that we may have problem of feasibility. The terminal constraint
which is y hat of k plus p equal to y ref of k plus p is easy to implement and it also stabilises the

controller. So we may, we will not have oscillatory response with this constraint present.

So MPC formulation is not just restricted to SISO systems, we can always use or extend this to
MIMO system. In that case the h1 will become a matrix. So we will have h11 h12 all the way up
to hlm and hnl all the way up to hnn. So similarly we will have for each coefficient like this. So
it can be easily extended for MIMO systems. We can as well use nonlinear model to predict y hat
of k plus i. But the problem is if we are to use on nonlinear model, the optimisation becomes
nonlinear optimisation. So we may end up with local optimum rather than global optimum which

1s what we get in by solving this optimisation function.

So like the MPC eformulation by itself does not specify which type of model to use. Other than
that, if we were to if we have to solve optimisation problem in accorded a programming
framework or using linear programming principles, the model has to be linear. Other than that,
there is no specification of how, which type of model to use for prediction. So we can use any
type of model for prediction. We can add constraint on both us, ys, Delta us and other such
constraints which may occur and we can as well customised the objective function based on

minimizing u square or minimising Delta u square, minimising time, et cetera.

So the MPC framework by itself is flexible enough but it has to be customised and each
constraint we add may each equality constraint we we add and its output constraint we add may
make the optimisation infeasible. So the stability and feasibility of this MPC framework has to
be theoretically proved. So like this, we can implement MPC in MATLAB. There is also a
toolbox called MPC Toolbox in MATLAB which is very easy to learn. At the same time, it will

be it will have more diagnostic facilities and other options.

So I have shown here the traditional way of coding the MPC by hand and implementing it for
any system. So with this, I finish MPC tutorial.

