
Process Control-Design, Analysis and Assessment
Doctoral Research Scholar Manikandan S

Department of Chemical Engineering
Indian Institute of Technology, Madras

MATLAB Tutorial-Controller Design - Part 3

Welcome everyone to MATLAB tutorial for process control analysis, design and assessment. In

this tutorial, we look at MATLAB implementation of model predictive controller. Just as an

introduction, I will give the formulation of MPC and I will directly go to the code section of

MATLAB and then show you how to code implement model predictive controller and how we

can during the model predictive controller in order to get the performance we require and so on.

(Refer Slide Time 1:00)

So the model predictive controller is a controller which solves an optimisation problem online.

So the optimisation problem is formulated such that the model predictive controller uses model

and et can be easily solved. Most of the time, we solve a quadratic program optimisation. It

computes optimal input moves which is optimal in the sense of the objective function we have

chosen. And since this is an optimisation problem, it can handle constraints easily.

 And it is easily extendable to MIMO systems. The example I am going to show here is for SISO

system. But the implementation is not restricted to see SISO system. It can be extended to

MIMO. Only that we will have to look at how the structure of each term in the objective function

and prediction oriented terms are in MIMO systems. And MPC is also computationally time-

consuming but the examples which I am going to show here will be fast enough.

But if we have more inputs and more outputs for example like 25 cross 20 system where we have

25 out and we have 20 inputs then such systems will require more computational time in order to

get the optimal in order to calculate the optimal solution for the optimisation.

(Refer Slide Time 2:55)

Now this is the formulation where we minimise the objective function where Y sat pine minus Y

hat of K plus whole square and there is a minimum move objective added to the deviation from

setpoint. Now the Y hat of K plus I is computed as an impulse response that finite table’s

response model with gamma coefficients. And we have the constraint that U of K plus I equals to

U of K plus M minus 1 where I is M to P. So what we are essentially saying is though we have

gamma elements of U to optimise, we choose to optimise only M elements.

And on top of it, we have limit constraints on U for all time instants which is from 1 to M.

Notice that I have not specified what P is and what M is and neither have I specified the limits.

So these will depend on individual applications and we may have to modify them to suit to get a

better performance. Look at how we can compute and make the computation easier for us to

implement it in MATLAB.

(Refer Slide Time 4:37)

So we are computing summation I equals to 1 to P y of k plus i reference minus y hat of k plus i

whole square. So we need to compute y of k plus I y hat of k plus i as a function of h1 to h

gamma. So we have h1 u of k plus h2 u of k minus 1 all the way up to h gamma u of k minus

gamma plus 1. Now in this optimisation function, we have minimized u. This u is constructed

such that it has uk, uk plus 1 all the way up to uk plus m minus 1. So these are the unknowns

which we which we have to optimise.

So this uk is unknown, whereas the rest of the terms are known. So this essentially evaluates to a

constant. And the next term y of k plus 2 will be h1 times u of k plus 1 plus h2 times u of k plus

all the way up to h gamma times u of k minus gamma plus 2. This will continue up to y hat of k

plus m minus 1 which is h1 times u of k plus m minus 2 all the way up to h gamma times u of k

minus gamma plus and minus 1. And y hat of k plus m is h1 times u of k plus m minus 1 all the

way.

Similarly they will have y hat of k plus m plus 1. Here is where because the constraint that u of k

plus m equals to u of k plus m minus 1. Because of that we will have h1 plus h2 times u of k plus

m minus 1 plus all the way. So finally we will have y hat of k plus p which is h1 to h into u of k

plus m minus 1 and etc. So we can notice the general structure where we have h1, h2 h1, h3 h2

h1, like this times u plus some known matrix which we can formulate.

(Refer Slide Time 8:17)

We will look at MPC implementation in MATLAB. Shown here is the code which implements an

MPC for a SISO system. First I have declared the system here as a transfer function with the 3S

plus 1 divided by 2S square plus 5S plus 1 as the transfer function. And I have discretised the

system using a sampling time of 1 second. So TS equal to 1 implies that I have sampled the

system once, for one second and I have computed the impulse coefficient using the inbuilt

function, Impulse.

(Refer Slide Time 9:01)

Now in the next section, I have declared the model. So as a start we will start with the same

system as the model and see how the performance is. Then we will look at introducing plant

model mismatch and see how the MPC performs. So I will just comment the this line also.

(Refer Slide Time 9:23)

Then I move on to control specification where I specify the length of the simulation as 100

seconds and we initialise the output parameters y and u. Then I move on to tuning parameters

which we can change based on the requirement. So the tuned at P is the prediction horizon, tuned

at N is the control horizon. TS is again sapling time. Bias and biasc are bias correction

parameters. we will start with dim off now and we will see how they affect the controller

performance later.

Lambda is the multiplier used for waiting the objectives which is deviation from setpoint square

plus minimum move. So the subjective option helps us decide which objective to be optimised in

the MPC formulation.

(Refer Slide Time 10:33)

Now the then I have specified the lower and upper limits for input which are specified as minus

0.5 to 10. Then I declare reference trajectory which is the setpoint as of now as 2.5. And I declare

such some internal variables. Now because we are using linear time invariant models, the

matrices multiplying the decision variables uk to uk plus m minus 1 and the constant matrix are

time invariant. Because of that, I precompute those matrices called T and S in this section and I

store it in the structure tune.

(Refer Slide Time 11:24)

These are done apriory so that the computation time is reduced. Now runMPC is the functional

which runs the optimisation for one iteration M provides solution from uk to uk plus m minus 1

and those values are stored in the variable u of which we will just select the first few first input

variable, first-time instant input variables and apply it to the system. Notice that I have computed

y predicted as well as y actual using model and system coefficients. This is to generalise the case

where we plant model mismatch. So in case of plant model mismatch, predicted y and the actual

y will be different.

So we will have to correct for that bias in a in real-time fashion. So that has to be updated in the

MPC formulation.

(Refer Slide Time 12:31)

So in order to do that, I have computed both predicted y and the actual y. The final section of the

code consists of plotting the results and correspondingly I have named the trajectories and given

labels for y, x and titles. Let us look at how runMPC is configured so that we are sure about the

coding. So here, you can see the runMPC function. It takes reference y, the model parameter as

model, tuned structure as tuned, OP is the previous iteration previous time instant input variable.

These are used to compute the constant which is part of MPC formulation and the u not is the

initial condition or initial guess for the optimisation. In the first 2 lines, I have created a matrix

containing the input lower limit and upper limits repeated m times. In order to do that, I have

used MATLAB function, repmat.

(Refer Slide Time 14:07)

And I have also given a provision for specifying terminal constraint which is u of k plus p equals

to y setpoint which we will do in a later case. So now we will be running this case where we

have no constraints other than limits.

(Refer Slide Time 14:35)

Now this MPC objective function computes the MPC objective which is y minus y setpoint

whole square times whole square summation y minus y setpoint whole square for I equals to k

plus 1 to k plus p. And similarly we have summation u of k plus i whole square where i runs

from 0 to m minus 1. So that is calculated here. In order to compute yp, we use that matrices

which we computed as T and S here. T times u. u is the decision variables containing u of k to u

of k plus m minus 1 ad OP is the variable containing previous iteration u values.

So we will have YP as a vector of P output variables and then we update the bias here by

constructing a vector of P values repeated either as 0s or using the constant which is computed in

the previous iteration. Then we have 2 cases where in one case, we do not have this summation u

u of k plus i whole square and in the other case where we have summation u of k plus i whole

square, the effect of this will be easily seen later.

(Refer Slide Time 16:28)

Let us move on and run the code. So this is the function that has to be studied. This is the script

we have to run in order to see the performance of MPC. Let us run it. So now you can see that

the system reaches the setpoint fairly quickly, within see 10 to 15 seconds. We can zoom in and

see. So around 15 second it reaches to 0.5 and stays there. Notice the input variation. It starts

from 3.3, goes down to 2.5. So it has 0.8 as the variation.

(Refer Slide Time 17:28)

Now without closing this we window, I am going to just change the type of objective which we

have used. So this, the objective we have used did not have the summation of u square. So if if

we just change the objective, how will the system perform is what we are going to look at now.

Now you can see that initially the whole variation was around 3.3 to 2.8 which was 0.5 and here

also it is similar but the output since the initial input was 3.3 at that time, the output was able to

reach 2.5. But since we have minimal variation in the input as a objective, there is a bias in the

performance.

(Refer Slide Time 18:36)

So we can tune that by tuning this lambda. We will put minimal weight to the 2nd term which is

summation u square. Let us see how that works. Now you can see the response actually reach the

setpoint and the variation is like 3.3 to 2.5 which was the previous variation also.

(Refer Slide Time 19:21)

Now let us look at introducing plant model mismatch and how the system performs. I will just

change the 2nd parameter to say 0.1323. So what we are saying is all the parameters other than 2nd

term in the model is estimated properly. This particular coefficient is estimated in a wrong way.

So if we do that without the bias correction, how will the performance be? Now you can see, we

have oscillatory performance. This oscillation is because of the constraint which is being forced

in the object optimisation function. You can see that it becomes minus 0.5 for 2 seconds and then

it goes back. So this is the reason why the response is oscillatory.

(Refer Slide Time 20:33)

 The actual model function of the 2nd constant has the value of 0.6 sorry, 0.6323. So when the

model is changed, the 2nd coefficient is changed by 0.5, we have oscillatory response.

(Refer Slide Time 21:03)

We can change this to say 0.3323 where with we will have smaller variation than the previous

case. We will have fairly stable response. You can see that this green curve goes to stable and it

reaches the setpoint but if we zoom in, we can sorry. If we zoom in, so you can see that the green

curve has a deviation from 2.5. Let us close this and we will turn on the bias correction and see

how this works. So we have like 0.1 sorry 0.015 as the bias. It is still not reaching the setpoint.

So we will have to tune depending on how different the model is.

The other way of eliminating this plant model mismatch is to add filters like Kalman filters

which estimates the states online using measurements. We can tune the filter to have optimal

performance and then we can couple the filter implementation along with MPC so that we will

have better control.

(Refer Slide Time 23:02)

Next next let us at when the reference trajectory is changing how the system will respond? So we

will change the reference trajectory as a first order response, first order response with sometime

constant as 5 seconds and we will use the same model as the system and see how the system

responds. So the idea is we are not restricted to using a single set point. We can give a reference

trajectory which is a function of time and we can still control the system fairly, easily. So you can

see that the reference trajectory is a first order response and the system was able to reach the

trajectory.

(Refer Slide Time 24:08)

We can try changing m which I have put it as 1. Let us put it as 3 so that we will have more room

for optimisation. So in that case, the variation will become smoother and easier compared to the

case where it is 1. So the orange curve is the new cover which uses one setpoint and the

corresponding curve is here. So you can see that it is kind of smooth. We can increase the puff

prediction horizon together with control horizon to get a better performance. So in that case, we

will sorry let us see here. So in that case we will get easier better approximations and hence we

will get better control. Now we have looked at MPC implementation in MATLAB.

(Refer Slide Time 25:45)

We can do other customisations like we can add weights to different elements present in this as

well as this. So that will advise the optimiser to put more weightage towards that prediction or

less weightage towards that prediction. So we already have a tuning parameter lambda

multiplying this. So based on which we we advise the optimiser to weight this the 2nd term such

that the first term is either more weight, given more weightage given less weightage.

We can also add other constraints like y of k plus i lying between y of upper limit to y of lower

limit, sorry y of lower limit to upper limit. Now this constraint maybe these constraints may not

be achievable because we assume the system to be linear and finite impulse response system. So

there are plant model mismatches. Because of that, we may not exactly match this constraint but

we can give some room for the constraint to be relaxed so that we can still get a feasible solution.

So adding these constraint which is on output limits, we will may lead to visibility problems.

And we can add other constraints like Delta u being within some Delta u limits and other

constraints called coincidence point which will help us reach the set point faster by means of

specifying y hat of k plus i to be equal to some y reference of k plus i. But remember, this is also

an output constraint. Because of that we may have problem of feasibility. The terminal constraint

which is y hat of k plus p equal to y ref of k plus p is easy to implement and it also stabilises the

controller. So we may, we will not have oscillatory response with this constraint present.

So MPC formulation is not just restricted to SISO systems, we can always use or extend this to

MIMO system. In that case the h1 will become a matrix. So we will have h11 h12 all the way up

to h1m and hn1 all the way up to hnn. So similarly we will have for each coefficient like this. So

it can be easily extended for MIMO systems. We can as well use nonlinear model to predict y hat

of k plus i. But the problem is if we are to use on nonlinear model, the optimisation becomes

nonlinear optimisation. So we may end up with local optimum rather than global optimum which

is what we get in by solving this optimisation function.

So like the MPC eformulation by itself does not specify which type of model to use. Other than

that, if we were to if we have to solve optimisation problem in accorded a programming

framework or using linear programming principles, the model has to be linear. Other than that,

there is no specification of how, which type of model to use for prediction. So we can use any

type of model for prediction. We can add constraint on both us, ys, Delta us and other such

constraints which may occur and we can as well customised the objective function based on

minimizing u square or minimising Delta u square, minimising time, et cetera.

So the MPC framework by itself is flexible enough but it has to be customised and each

constraint we add may each equality constraint we we add and its output constraint we add may

make the optimisation infeasible. So the stability and feasibility of this MPC framework has to

be theoretically proved. So like this, we can implement MPC in MATLAB. There is also a

toolbox called MPC Toolbox in MATLAB which is very easy to learn. At the same time, it will

be it will have more diagnostic facilities and other options.

So I have shown here the traditional way of coding the MPC by hand and implementing it for

any system. So with this, I finish MPC tutorial.

