
Process Control- Design, Analysis and Assessment
Doctoral Research Scholar Manikandan S

Department of Chemistry
Indian Institutes of Technology, Madras

MATLAB Tutorial – Controller Design -Part 2

Welcome everyone to the tutorial for process control analysis, design and assessment. In this

tutorial we will start looking at MIMO systems and the controller design for MIMO systems.

First we will look at Dynamic decoupler design where we try and pair inputs and outputs in a

one-to-one basis and then control the whole system based on this configuration.

(Refer Slide Time: 0:49)

So Dynamic decoupler tries to nullify the effects of other inputs on the given input and output

parrying. So in order to do that we consider the effect of other inputs on this output to be

equivalent to some disturbance effect, so that D coupler is essentially design to nullify the

effect of such other input other than the pair which we are pairing particular output with.

(Refer Slide Time: 1:29)

So let us consider a mime system where we have 2 inputs and 2 outputs, now both U1 and U2

will have to effect on Y1 as well as Y2, because of that we want to find some linear

transformation such that we have variables which are decoupled such that this Y1 D and Y2

D are dependent on only the decoupled use called U1 D and U2 d. So now this outer loop can

be thought of as a seesaw controller if we were to put a controller here. Y D set point and Y 1

D set point are the set points we choose the system to reach, based on that we will compute

the error and the controller will give the corresponding decoupled U. So we have some

decoupler the transformation for input and decoupler transformation for output.

By default we choose output decoupler to be identity so that we have a notion of the set point

as the objective of variables Y1 and Y2. But the D I will be we will have to choose D I such

that the effect of U2 for example and Y1 is 0 and effect of and the effect of U1 on Y2 is 0.

(Refer Slide Time: 3:54)

So let us take two input two output system where we have G 11, G 12, G 21 and G 22 as the

transfer function multiplying U1 and U2 for Y1 and Y2. So we choose the linear

transformation matrix such that it is 1 and D 12, D 21 and 1, so how we decouple U1 and U2

is like this. So U1 U2 equal to D I times U1 D and the U2 D. If you were to expand this

equation we will get these 2 set of equations, now you can see U1 of S is U1 D of S + D 12

times U2 D similarly, we have U2. This we can back substitute in these 2 equations and

separate the terms based on the decoupled input variables U1 D and U2 D.

The Dynamic D coupler design works in such a way that the effect of either U1 and Y1 or U2

and Y2 is made to 0, so in this case we choose to make the effect of U2 on Y1 to be 0. In

order for that to become 0 this term has to go to 0, based on that we compute D 12 as minus

G 12 divided by G 11. Similarly we have Y2 and we eliminate the effect of U1 and Y2 and

that equation is this and solving this will lead to D 21 of Sbeing minus G 21 divided by G 22

of S. The important point to notice U1 is U1 D of S plus D1 2 into U2 D of S, but Y1 S is G

11 of S plus G 12 of S times D 21 of S into U1 D. So this D 21 is the function of G 21 and G

22 and D 12 is the function of G 11 and G 12.

Now we can back substitute and see whether it will decouple properly, so why of S is G 11

minus G 12 into G 21 divided by G 22 into U1 D of S. Not because we equated this term to 0

this will go to 0 similarly, we will have Y2 of S equals to G 22 – G 21 times G 12 divided by

G 11 into U2 D of S. Now how do we configure and implement such the coupler in simulink

is what we are going to see next.

(Refer Slide Time: 7:43)

So here notice that I have given G 11, G 12 up to G 22 as separate individual transfer

functions. The transfer function block in simulink allows seeing more system to be specified,

but if we were to specify the whole 2 cross 2 system as 2 two single systems, then we cannot

have the coupler effect so because of that I have defined the transfer functions individually; G

11 individually, G 22 individually, G 21 and G 22.

(Refer Slide Time: 8:34)

So the values are like this, so we have 3 S plus 1 divided by 0.1 S square + 1.1 S plus 1 and

0.8 S + 1 divided by 0.1 S square + 1.1 S plus 1 and 3 S + 1 divided by S square plus 2.5 S +

1, and S + 1 divided by S square + 2.5 S plus 1 sorry S + 1 divided by S square plus 2.5 S +

1. Now based on these values we can calculate D 11 and D 21 which are given here. Now the

controller PID controller for U1 and U2 will give U1 decoupled and U2 decoupled, the U1

which we are giving it as an input to the system is U 1 D of S + D 12 times U 2 D of S. So we

have one term coming from directly from PID controller which is U1 D of S and then there is

another term coming from U2 D of S which goes into D 21 and then added. Notice that there

is a negative sign in D 12 which I have translated to this submission block being subtracted;

both actions will result in same result.

(Refer Slide Time: 10:42)

The PID controller design I have designed such a way that we will have simple filter along

with typical P, I and D values, so you can see that let us run the system for 100 seconds and

then we see how the system behaves. So we have given unit step input to the system, as you

can see there are initial oscillations and that seems to be some offset which is like 0.2 or

something sorry 0.02 or something. Similarly you have minimal oscillatory variation in the

2nd output and there is some offset which is 0.02. So this has to be eliminated through proper

design of PID controller and the effect of the model plan mismatch will be more in these

cases where we do dynamic decoupling for MIMO systems.

(Refer Slide Time: 11:36)

Let us look at the look at another method where we use relative gain array to pair the MIMO

systems such that we will have reasonable control with minimal offset and minimal

computation also. So the idea is, pairing is done based on static gains and we can compute

these static gains values by final value theorem for a given transfer function. So let us

suppose we have done that then we will have Y which consist of Y1 and Y2 is equal to K 11

times U1 plus K 12 times U2, similarly Y2 is K 21 times U1 plus K 22 times U2. We define

some terminology is relatives gain as K IJ divided by K IJ dash for all I and J values.

Now this K IJ is the gain of the system, K IJ dash is the gain of the system where all other

transfer functions, all other loops are in closed loop and only the loop in question is in open

loop so in such case what is the gain of the system is computed as K IJ dash. Now we call the

term K IJ by K IJ dash as RG related gain IJ, again I runs from 1 to n and J runs from 1 to m,

they are integers so they are only integers. Based on the structure of the matrix K here, this is

K matrix so based on this structure we can compute relative gain for each and every

terminology, so we will have Y1 pairing with U1 and Y1 pairing with U2. Similarly we will

have Y2 and U1 and Y2 and U2, so we have 4 terms to calculate.

So if we calculate each terms and then assemble the numbers in matrix, we find that we can

reduce the whole operation into K dot K inverse whole transposed, the dot operator is

element wise multiplication. So we will look at one simulation example simulink example,

where we use RGA Relative Gain Array based tuning to design the controller. So as you can

see I have once again configured each and every transfer function individually and then I

have used one PID for controlling each block, but we have to find which type of pairing is the

best.

(Refer Slide Time: 15:48)

So in order to do that let us see what each final value is and we construct the K matrix and

then we will see how each input has to be paired along with output value. Now the final value

of this transfer function which is 0.659 divided by S + 0.395 is 0.566 divided by 0.395. Let us

calculate what it is K 11 equals to 0.5659 divided by 0.395, so which is 1.4327. Similarly

final value of the 2nd system for unit step changes is 0.98 divided by 1.351 which is so

0.7254. The 3rd element is 1.69 divided by 1.351 which is 1.2509, and the final element is

0.984 divided by 3.42.

Now the matrix K is K 11, K 12, K 21 and K 22, so let us compute K dot star inverse of K

and transpose. Notice, I have used dot star here in order to compute element these operations

and the transpose is computed when we can use the symbol apostrophe. So we find that the

best pairing is the pairing which contains nonnegative close to one relative gain. So here you

see the first term which is relating Y1 to U1 has negative coefficient, whereas Y1 to U2 has

positive coefficient so we have to pair Y1 to U2 and Y2 to U1. So the output of the PID

controller is U1 and U2, I have assumed Y2 setpoint to compute U1 so I have given

connections to G 11 and G 21. Similarly I have calculated I have used Y1 setpoint and Y1

together to compute U2 so I have given connections to G 12 and G 22.

If the pairing is reverse, this connectivity that is connecting U1 to corresponding transfer

function and U2 to corresponding transfer function will change. The PID I have tuned using

sales will G desire in direct synthesis method which is 1 by 0.1 S plus 1 and then I have used

the corresponding parameters here. Or we can tune it now itself that using trial and error

method. So as you can see these parameters are not optimal now so we can do the tuning

here, in this case we have seen that Y2 is getting stabilised here, Y1 is still not so we will

change that operation or we can as well use the auto tune method but, so this is how you can

see, the 1st output reaches 1 fairly quickly within 8 seconds, whereas there is an offset in the

2nd output.

So we can use direct synthesis method of tuning to compute PID parameters but since we are

not decoupling base in a dynamic sense, we might have to use starting gains 1 st in order to

compute direct synthesis method based tuning. With this I will stop this tutorial, we will look

at model predictive control based controller design in the next tutorial, thank you.

