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In this topic we are going to talk about PID tuning. So, we are basically going to look through

Ziegler Nicole's method and Cohen Coon method and we will just give an idea of all these

things and you can try out with all these formula. There are a lot of formula for PID tuning

like there is a, there is a lot of ways in which you can tune the PID controllers. So, these are

the one of the most commonly used methods, so and you can also try using these things and

you can refer the literature like there are a lot of tools for PID controllers, between the PID

controllers you can use any methods (())(0:51), etc.



So, basically you will get an idea of what these 2 methods are. So, again we take the system

to be some process, which is going to have a transfer function 1 by S Cube + S square + 2S

+0.1. So, again, remember when we say this is a transfer function, this is the transfer function

of the system or the process, so these are the process, so we get a linear model of it around

that operating point. 

Why I am telling this is because like, let us say I have to maintain the temperature of the

boiler to be like 200 degrees Celsius, I am just telling some numbers, random numbers, so

this, if you take a boiler to be a non-linear equation, like if you will take it to be a system

which is non-linear, then basically this transfer function will vary when when you if you will

limit the boiler at around 200 degrees Celsius or 50 degrees Celsius or 40 degrees Celsius.

So, it  is important that this  transfer function is like around which point you will  get this

transfer function. So, what we normally do is, we will build the system around that point at

which we tend to operate,  at  which we decide  to  operate,  so that  is  what  we say if  the

operating point. So, I want to maintain the temperature of the boiler at 200 degrees Celsius,

so what I do, I will tune the PID controller like around the operating point. So, I will linearise

the model around the operating point's, and I will get a model of it and then I will try to use

that model to find the PID kinds.

So there are different methodologies when you have a very non-linear model but this is the

idea you have to have. Take basically a linear system around the point at which we decide to

operate it. So, we use of basic PID controller structure. So and this is the system which we

already seen and we found like,  okay, we found that  ultimate  gain value to  be 1.9.  The

ultimate  gain  value  is  the gain  at  which  the system will  start  going into  the  oscillations

basically. It is a gain at which the poles of the closedloop poles of the imaginary axis, it can

lie on the root locus.
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And it is also the gain margin of this, so everything is related, right, so that is what we saw in

the previous thing. And critical frequency is approximately 1.4. So, this is what we have seen

before. So, now from, you can use all kind of criteria, we have already solved it but you can

solve it, like you can put S cube, S square, S 1 and then 0 and then you can put 1, 2, 1 and 0.1

here. And basically we have to remember, we have to use, we have to use Routh array criteria

for a closedloop transfer function.

So, basically when we have a transfer function like this is the setpoint and this is the summer

block and this is the gain, transfer function and then you feed it back, so basically what you

have is a closed loop transfer function in nothing but K by this is G of S, so basically S cube

+ S square + 2S + 0.1+ K, we already saw this in the previous lecture, this one but still again



we are writing it down. So, this becomes 1 by KP. And we also saw that when this will

become 0, when you have liked 2-0.1+ K by 1, so that will become equal to 0.

And this we say like if this is (())(4:50) so basically we can take like K equal to, from this if

we quit this to 0, we get K equal to 1.9. So, this is the ultimate gain value from Routh array

criteria. So, we already saw this in detail in the previous lecture, so you can go back and see

but this is the simple thing to find what is the ultimate gain value. So, again, also like taking

the root locus or taking the Bode plot, whatever technique you use, it has 2 come to the same

thing, right.

So basically enough for the same system if you drop the root locus, root locus is drawn using

the open loop transfer function, okay. So, as we varies again, it crosses the imaginary axis and

if you see what is the gain at the imaginary axis at this point, then basically it is like 1.93. It is

not exactly the imaginary axis, it is somewhat little towards the right of the plane but you can

imagine that it is less than, again it is increasing in the gain.

So, to on the imaginary axis, somewhat close to 1.92 or something because that is what, this

poll is not on the imaginary axis, so this will tilt towards the right of this plane. So, if you

decrease the plane, so that you will get on the imaginary axis. And we can see here from

Bode plot again like at -1 degree, what is the gain, the gain is nothing but -5.58 DB, which is

nothing but which is saying that to make this system unstable, we have to add additional 5.5

DB to the gain, that is what the gain margin says.

Which  is  nothing  but  if  you  convert  it  to  multiplicative  gain,  it  is  nothing  but  1.9.  So,

everything gives there is the same value. And if you see here, the Bode plot also gives the

frequency, the  frequency is  1.41 and here also  if  you can see,  the frequency is  1.41,  so

approximately it is 1.4. So, basically like all these methodologies should be giving the same

values of the critical frequency and the same value of the ultimate gain. So, by doing different

methods, you should not get different values, so that, keep in mind that one.
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So, now again, like what is this Omega C equal to 1.41, what does that apply? It implies that

when the gain is not equal to 1.9, this term is going to oscillate at the frequency of 1.41. So,

that is what we saw before also. So, when we increase the gain by 1.9, when you multiply the

gain by 1.9, that is when this term will go into oscillations. And at what frequency it will

translate, it will translate at the frequency of, angular frequency of 1.41. So, why , if you ask

the question why, because that is when we can see the wall crossing through and you can say

this comes around, that is the kind of wave that goes in phase.

At that frequency goes, it comes around the loop in phase and it has the gain of equal to1, so

it keeps oscillating at the frequency of this particular OmegaC at which the phase is in, the

sine wave is in phase around the loop, so that is what we saw. So, this critical frequency is

nothing but the, we will tell the frequency at which the system will the system will oscillate

when the gain is increased to 1.9. When the gain is equal to the critical gain, that is when the

system oscillation will oscillate at the critical frequency.

So, this is in, OmegaC is nothing but the angular frequency, so we will convert it into normal

frequency. So, we know that 2 pie F nothing but OmegaC, so F is nothing but OmegaC by 2

pie. And frequency nothing but 1 by time period, so one but I figured equal to 1 OmegaC by

2 pie, which means time equal to 2 pie by OmegaC. So, if you can calculate the time, time

comes around at around, I think around 4.48, you can substitute the value of 1.4 and see all

these things. It comes around 4.48 which we can see here.



Basically we can see, we can pick this waveform, we can pick this period. So, the sine wave

starts here, it completes one oscillation here and then it completes one oscillation here. So,

basically within 10 seconds basically it completes 2 times and it has some more gap. So,

basically ya, 4.48 should be working, right. So, that is what we can see, approximately 4.48,

if this is 4.48. It is like it is like you can zoom it and see, basically becomes equal to 4.48, that

is what we can see here. So, yeah, so basically everything, even if you plot and see, you will

be able to find the value of the critical frequency.

Even by plotting you can find you can find the time period of 1 sine wave here and then with

this time period you can find omega critical frequency by just backstab shooting. You remove

the time period and you find OmegaC and that should be around 1.41. Just remember this, all

these methods should give the same value, that is what we are seeing.
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And then Ziegler Nicols method, that the table, so from Wikipedia we have taken this table.

There are a lot of tables, so basically what you do, once you find the ultimate gain, that is

KU, and once you find the, this is nothing but the period of oscillations, TU is nothing but the

time period, which is nothing but TU is nothing but, we have derived in the previous slide,

what is it, 2 pie by OmegaC, it is 2 pie by OmegaC. S

o, we have calculated the Tu value.  So, once you know the value of KU and TU, KU is

nothing but the gain at which the system will go, once you got KU and TU, you can substitute

these  values  and  then  that  find  the  value  of  KP, TI,  Td  and  etc.  That  is  what  you can

substitute. So, basically you can write Ki is nothing but KP by Ti. And KD is nothing but KP



into TD. So, that is what you can substitute and senior, it will be like, you will be getting this

K I and Khedi value.

So, in lookup table, you can have it in the paper and just look, find this value KU and TU and

just substitute this into that and then you can see that. So, there are a lot of rules, like this is

not the only rule that we have, a lot of rules that we have, so basically that is what. And one

more thing that we can say here is like there are some kind of some other table, which says

like, some overshoot, no one should. So, you can substitute, once you find KU and TU, you

can just play around with this and see whether this gives no overshoot.

So why it is overshoot basically, so whenever, I want to give a step change in my, I want to

go, I want to change the set point, check the variable from 50 degrees Celsius to 60 degrees

Celsius and I want to give a step change. Then the control variable actually goes around and

then  comes  like  this.  So,  what  temperature  it  will  reach,  more  than  the  steady-state

temperature is what is called the overshoot. So, one thing, (())(12:01) overshoot, why it is

important is suppose you have a tank, okay and then you want to change the level from 50

percentage to 80 percentage of the tank level.

Now, you are interested to ask like if it has an overshoot, whether the tank will, like whether

the water will flow out of the tank or not. So, basically if you have a tank something like I

will just use this. So, if you have a tank, it is having like 50 percent, so you want to give a

step change from 50 percent to 80 percent, we will take that. So, you want to see whether the

tank, whether the level will go outside of the tank level or not. If it goes out, what happens, if

it goes to 100 percent, then what happens, the water will flow out of the tank, right which is

not desirable.

So, overshoot is kind of, you can think like overshoot why it is important in such sense. And

so, this, when you do not want the overshoot basically you can use this particular formula.

You can check this, similar tenancy what happens. All that you have to calculate is KU and

TU and you can use different methods for KU and TU, UK News Routh array, you can use

root locus, you can use Bode plot, everything gives the same value and you find this value

and then you substitute, you use this, any of the form +, whatever it is here.

This is not the only site, there are a lot of rules available, you can go to, you can do the

literature survey and then you can find it out and then you today and see what happens. And

this classic PID is another thing that is like, mostly people, some, why it is like interesting is



because what it says is like I will have a decay ratio of one fourth. So, if you have something

like this and then settling like this, what it basically says is if you see this amplitude and this

amplitude, you call it as A and you call it as B, then what it says is B will be nothing but, it

will be like one 4th of the A, that is what it says.

So, 1 by 4 decay, everytime it decays, it is like one 4th value, 4 times in decreases basically.

So, A will be 4 times bigger than B, that is what it says. So, this is another way of tuning. So,

all these things are 4 different, all these things are like some form + for one objective. So,

there are a lot of ways you can get this PID controller, so you can display around with this

and you can write for yourself.
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For  illustration  we  have  just  taken  a  simple  PI  controller.  Basically  we  have  used  this

particular formula and this is what the output we have got and then this is the response we

got. So, this is just for your illustration, you can just try with yourself with something and

then you can verify how each things behave. So, all this is for getting an intuition of what

these things do. So, when we have, we did a lecture on what the effect the PID gains have on

the system.

So now we use different tuning methodologies and say okay, this is better for this thing and

for  this  application,  this  seems  better  and  this  application  this  seems  better,  etc.  And

everything has its own advantages and disadvantages. So there are a lot of rules available,

you can just so that you can just see. So, now, next method we are going to see is like Cohen

Coon method. So, why this method is like Interesting is this is the next widely used method

Cohen Coon is the next widely used method that you are going to have.

So, here is what we are going to do is we are going to get a FOPDT model. So, a FOPDT

model is nothing but a first-order + that time the process. So, any system you can represent

this  something like K by 1+ tao S into e  power -  ds,  so that  is  something like you can

represent any system. So, let us say you have, you have been given a plant and let us say you

are having say boiler effect.  So, let us say I am giving you a system, I am giving you a

system, I ask you to tune the PID controller for it. So what is it you are going to do?

So you, we may not actually from 1st principles start deriving all the things, like e equations

and energy balance equations, energy conservation, etc. and finally we get, that is one way of

doing it. The another thing is I have a system, have it now, can I do something quickly to tune

the PID controller? And because like (())(16:21) deriving from 1st principles is again using

approximations and then again that is not a very great methodology, because there also you

will say some approximation.

So why do not take, just use a system I have and then I play with it, so that is what I can do.

So, what I am going to do is basically I am, I wanted to maintain the setpoint to be like

around 80 degrees Celsius. So, what I am going to do is I am going to give a step change, like

close to 80 degrees Celsius. Okay, so what I am basically doing is I am using G of S, I am

giving a step change , I am giving a step change in the inflow like the manipulated variable.

So, I am giving a step change to the mall reflected variable of G of S and then see how the

output changes.



For example if it is if it is boiler or something, what I am going to do, I am going to just put

more fuel to it, so that I am, I am giving a step change in the fuel and then going to see how it

is going to, how the temperature is going to vary. So, this is going to vary something like this.

So, and now with this, can I get the model? So, my objective is to do this experiment to get a

model, basically to get some coefficients and then use these coefficients and model to get

some PID values KP, Ki, KD values. So, that is what is happening here, so this is the Cohen

Coon method.
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So we will try to see for the same system, for a system like this what is the, let us say like this

is what I have got the response. So, basically what I have done, I have given a step change in

the (())(17:53) variable at time T equal to 0. And this is what I got as a response. So, basically

this is how my output is going to vary. So, what are the values I am going to get from this and

this is how I am going to use these values for getting the controllers parameters is what I want

to see here.

So, now here, if you can see here, basically I will just read out the things here, so that it will

become easier for explaining. So, I have given step change in any manipulated variable, so

this is what I am giving this thing as the manipulated variable. And now what happens, my,

this is U, okay and what happens, my output is going to change like this, okay. So it is going

to go like this, so it is something we can see. And 1st thing what I am going to say is, see this

actually looks like it starts after sometime, right. But maybe actually it started here but it was

not going so fast.



So this is one thing I will seek. And then I can visualize this as something like it is a first-

order response, I can visualize this as a first-order response, she, I will say this is a first-order

response's, which is starting after certain time. So, this I will call as dead time. So, I can

consider this as a first-order response with the dead time, so that is what I can think like this.

So it actually this is not a first-order dead time, basically it has started increasing here itself

but  it  is  slow  enough  and  after  that  after  a  while  it  starts  behaving  (())(19:25)  but  for

everything I have the approximation, here also I am just approximating things.

And then what I am going to do is I am going to just take this as a dead time and then I have

the first-order system. So, it is basically like, the first-order system's response is something

like this and am just shifting it, I am dealing it by time, by a dead time, therefore it is like, I

am visualising this like this and then I am going to find what is the first-order that time

process model. So, basically what it means, I am having a first-order model, which is actually

having a delay of D seconds. 

So, this is what it tells, this time is about, this is the dead time basically. D is the dead time.

So, now what is the way I can look at. I can, what I will basically do is I will draw a slope

basically, maximum, in this line what is the maximum slope I can draw? Basically I can draw

something like this, so we are distant, I will draw something like this slope and that point at

which it intersects the x-axis, that distance, dead time, what time it intersects the x-axis, that

time is called dead time.

So, I can do this as a T. And then what I can do, from 1st, I is that it is a first-order, what I can

do is I can tell like at 63.2 percentage, right, 0.623 of the total value, here it is 2 focus, at

some value around 2 into 0.632, which is like 1.2 or something. So we have somewhere

around, this is what is the time that is there, that is the time constant, right. So, that time

constant I measure after the dead time. So, after the dead time, whatever is the measurement,

that is what I am going to do, after the dead time, what is the time constant, that is what I am

going to say here.

What is the time it reaches after a dead time, I estimate for the daytime, what is the time that

it takes to go to 0.632 of the total threshold value. So, threshold value is 2 here, so this is

nothing but one point to something. So, this we have seen from the first-order response thing.

So, the time the time constant is nothing but the time taken for which 63.2 percent of the

threshold value. So, that is what we observe from the first-order system's thing and that is



what we are applying here and then we can find tao like this. And what is again, again is

nothing but for step change in the input, so this changes U is 1, increased by 1.

What is the final change I get here. So let us call it as Delta Y and let us call this as Delta U

forces, if I give a Delta U change, how much change Delta Y has happened in the steady-state

condition.  The steady-state condition is like this here. So, if you give a step change, if it

becomes 2, so basically it means for a 1, for Delta U it is equal to 1, for a unit step change, I

am getting Delta Y is equal to 2. So, again is nothing but nimble 2. So, I get the gain equal to

2 and at 10 equal to around 0.5 and this Tao looks like around 1, right.

So my, so this is like a 0.5 to 1.5. So, this is like Tao's nimble one. So, basically this system,

this particular system is nothing but approximately 2 by 1+ S e power -0.5 S forces, this is

how we get the (())(22:36) value of that time, time constant and gain. So, again is the Delta Y

by Delta U input. Like how much fuel I added, that is the input, that again is the fuel, that is

Delta U, that is the input. So, Delta U is a change in the input given and Delta Y is how, at

steady-state how the output change has happened, so that is the gain, Delta Y by Delta U is

again.

And then delta, then D is nothing but if you draw a slope, where it intersects, that is what is

the dead time. After a time it starts corresponding, that is what basically it means. And then

Tao is nothing but after this dead time to reach 63.2 percent of the final value, final Y value,

that is what is the time it takes (())(23:15). So, this is how we can find the FOPDT of a

system. And that is what basically is given here.
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You can go through this. And then, and once we add the value of K t, Tao and Td, Td is

nothing but the dead time. We can use this table to find the values of KP, Ti and PID KP, Ti

and Kd. So, that is what we can do it here. And this is nothing but, so Ki is nothing but, Ki is

nothing but KP by Tao i. We have already seen how to convert from time constant of the

gains of internal derivative, when we did it for Ziegler Nicols.

So, that is what, so you can you can try this Cohen Coon and then you can see how it works,

how it performs. So, it is just some work, some play, play with the values and take some

system transfer function, plot the graph and then take the FOPDT and then see what happens,

etc. And then if you are still, if you are interested, there are a lot of, lot more concepts in PID

controller, even in industries. Like when we use, if you go to the actual plant, like there are a

lot more practical constraints in implementing the ready controller.



And some, there is something called a bump less transfer. Why it is called bump less, what is

a bump less transfer and what is the integral windup. So we have an integration, if you have a

P I Controller, it has integration in it. And what happens when this integration, it goes to a

very high value and, you can just  read through all  these things.  These are  all  like  some

interesting things, you can just read through, which we are not covering but just some, it is all

available in the Internet, you can just go through this about what is the bump less transfer and

what is integral windup. 

So, basically you can play with all these things and you can try to implement something using

Matlab, using this bump less transfer an integral windup and see what happens. So which

may be some exercise for you. It is an interesting thing to do, thank you. 


