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Let us continue with our mini series of lectures on model predictive control. In the 1st lecture

on model predictive control I talked about the general philosophy of model predictive control

and used a picture to explain the basic ideas in model predictive control. And I said there are

3 important ideas, one is the use of the model directly in Controller computations. And the

second thing I said was, we introduced this notion of horizon. Instead of just saying that I

want my error to go to 0 right away, I look at the error over a period of time into the future.

And then try and see what I can do currently to make sure that the errors in the future are

minimised. So when we talk about errors in the future, then it also gives us an opportunity to

think  about  the control  moves that  I  will  make in  the  future.  I  am not  restricted  to  just

thinking about the control move in the current time, so there is a horizon and which I am

going to decide what Control moved to make and horizon in which I am going to decide how

the errors to behave. So that is the basic idea of model predictive control.

And the horizon and which and thinking about how the error should behave is called the

production horizon and the horizon in which I am thinking about what control moves to make

is called the control horizon. Now, the final aspect of model predictive control is actually

putting  all  of  this  together  as  an  optimisation  formulation  so  that  the  model  predictive

controller problem can be solved. And when we put all of this in an optimisation formulation,

then the solution to the optimisation formulation gives me the control inputs. The control

inputs are not written as analytical  expressions but they are a solution to an optimisation

problem.
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So we were working with this picture in the last class, this is a notion of the control horizon,

so this is where I am going to make these moves. And I am going to look at the prediction

horizon, which is generally larger than the control horizon. So that I can kind of think about

and change the behaviour of the error in a prediction horizon. And the key aspects of this

figure, the other key aspects of this figure are that this is the past, things that have already

happened and this is into the future and we also said that we are moving away from the

continuous framework and we are looking at all of this in a discrete framework. So we have

to keep that in mind.

Now, when we were talking about optimisation problems in the last class, I said there are 3

major components in an optimisation formulation number 1 is the objective function, number

2 are the constraints in the formulation, number 3 are what other decision variables. So, if we

understand each of these carefully, then we understand the optimisation formulation, okay.

Now the solution to this  optimisation problem in case where there were no constraints,  I

showed you in the last class and if it is a univariate optimisation problem, we saw that for a

function to take a minimum value,  the 1st  derivative should be 0 and the 2nd derivative

should be positive.

And in  a  multivariate  problem,  for  a  function  to  take  a  minimum value,  the  1st  partial

derivative with respect to all the variables should be 0. And the 2nd partial derivative which

is written in terms of a matrix called the Hessian matrix should be positive definite if the

function takes a minimum at those values, okay. So that is the solution to the optimisation

problem in an unconstrained case. In a constraint case, it becomes a lot more complicated and



typical optimisation course will talk about that. However, as far as this course is concerned,

what  we are going to  do is  we are going to  simply formulate  the problem and then use

optimisation solvers that are available with all software programs that come now, such as

Matlab, Sci lab and anything else that you might think of.

So, basically we are going to use the optimisation program to actually solve this problem, we

are not going to do this analytically, except to kind of understand how this works and which

is what I showed you in the last lecture. So, if you were to now formulate the MPC control

problem, essentially we have to take these notions of prediction horizon, controlled horizon

and  then  basically  say  how  does  this  translate  to  the  3  components  in  an  optimisation

formulation, the 1st component being the objective, the 2nd component being the constraints

and the 3rd component being the decision variables.

Now let us start with an objective. So, what I am going to do is I am going to literally say in

words what we want in terms of an objective and then I will show you how that translates

into an objective function mathematically. So, if I were at this point right here, I said I already

have a measurement at Y of K. And so basically what I can do in terms of manipulating or

modifying or shaping the error in the future has to start only with time K +1 and remember

time K +1 when I write K +1, I have already said the true time is K +1 Times Ts, we are only

doing it at discrete time intervals.

So, what I can do is I can think about modifying the error and since I have taken a particular

prediction horizon, I can think about what defying all the errors in this prediction horizon. So,

if you think about P time steps into the future, then Y K +1 given K, which is a measurement

which I do not have yet, so that is something you have to remember because we are doing all

of the sitting at time T equal to K. So I am predicting into the future, what the measurements

will be. So, basically I need to somehow figure out how I am going to do that for now let us

assume that I have some predicted what the measurements will be in the future.

Then I can basically say the error at each time is the reference. So, if I take this difference,

that is they are between YK +1 and Y setpoint at K +2 this is the error, K + releases the error

and so on, so, I will get these errors. So, you might call in some sense error at 1, which is K

+1, error at 2 and the error at the peak future time instants. So, let us say I have these errors

and from a controlled viewpoint my interest is in minimising this error. So, somehow I have

to collectively minimise all of these errors E1 to Ep.



So, when I try to minimise the 1st thing you can think of objective function is to say let the

minimise E1to E2 all the way up to EP, okay, so this basically I can write is i equal to1 to p

Ei,  right,  so this  something that I  can do.  But you will  notice right  away that  there is  a

problem with this. The problem is for example, if you have something like this, so I have this

point and then let us say I go here and then come down here, then I could have positive and

negative Es which will make this becomes smaller and smaller, you can even take it to 0.

However the problem will be that each of the errors themselves will not be 0. So, if you are

minimising, the other thing is the idea is to take the errors above setpoint in which case all the

errors will be negative. So, from a minimisation viewpoint, it is a good thing to keep getting

smaller and smaller values. So, in which case the E 1s can become very negative and you will

still be minimising this. But your objective is not that, your objective is to ensure that E 1 to P

all as close to 0 as possible, so just adding them up will create all kinds of problems.

You cannot really use this as a minimisation objective. So the minimisation objective that

people usually use is to say, let me minimise not Sigma Ei but Ei square. So, what this means

is instead of minimising E1 + E2 + E3 and so on up to EP. I want to minimise usually E1

square + E2 square + E3 square all the way up to Ep square. So, now what happens is, when

we try to minimise, that means the lowest value this can ever take is already known, which is

0 because this is sum of square. And that 0 you will get only if each of these terms are 0.

So since no term has the ability to become negative, all of them are positive, the lowest value

is 0 and the lowest value is achieved whenever E1, E2, E3 all the way up to EP are 0. So,

even if you have one negative, that squared will be a large positive value. Okay, so basically

the idea is a set of minimising Sigma Ei, you minimise Sigma Ei square and if you minimise

Sigma Ei  square,  then you are guaranteed,  the optimisation  objective  keeps  going down,

collectively all the E 1 to Eps are going out, it is not possible for one to become very negative

and so on, okay. That is the key idea.

So, if I want to collectively minimise all of these errors, E1 to EP, basically I do sum of

square and minimises so that the least value I get. So, this is called the least square problem

formulation. So, in this case since we are already at K, the 1st error Ei is actually the error

between the K +1th instance in the future and Y setpoint. So, if you look at this, what, if I

expand this, what this will give me is Y of K +1 - Y setpoint square, which will be the error 1,

the 1st error term + Y of K +2 - Y setpoint whole square and so on. 



And the last term will be K + p - Y setpoint whole square. This will be the P terms in the

objective function. Now, if this objective function is minimised, then each of these errors are

minimised.  That  means  whatever  I  have  predicted  in  the  future  in  terms  of  what  the

measurement  of  the  output  value  will  be,  those  are  actually  pretty  close  to  the  setpoint

because each one of these terms is going to go smaller and smaller. When these terms go

smaller and smaller, that means the difference goes smaller and smaller, that means the output

is very close to the setpoint.

So, from a control viewpoint, the object of minimising the errors collectively is taken care of

if I look at an objective function like that. So, that is the 1st component of the optimisation

problem which is basically the objective function. Now, when we look at this, we say okay,

this objective function is something that we have defined already, now how do we define the

other 2 components of the optimisation formulation.

(Refer Slide Time: 11:51) 

 

So, once the objective function is defined, the top portion of this picture we are kind of done

with, now we are going to focus on the bottom part of the picture and the constraints are

generally going to be on the puts, there could be constants on the output also, those are more

advanced formulation is, which we are not discussing here. So, let us look at  the bottom

portion of this and this is where the manipulated variables are being shown. So, the idea is

from a model predictive control viewpoint, what we said was we want to make these control

moves in such a way that the errors are minimised.



So, we have anyways posed the minimisation of errors as an objective function, so that is

taken care of. Now what does this move plan is something that we have to see. So, the moves

that I am going to make, so remember we are still talking about the single input single output

control, so there is only one U. But since there are many control hope that I am going to

make, that is I am going to make this formulation identify the values that I should keep for

this input variable at different times, I am going to think of each of them really as a variable,

so I might say the variables that I have, which I will come back in the next slide.

UK, UK +1 all the way up to UK + M -1. So, conceptually what we are saying is, I have

already  got  the  measurement,  after  I  got  the  measurement,  I  have  checked  whether  the

measurement is close to setpoint or not and so on. So, that is the different computation. After

that from a controlled viewpoint, what I need to do is I need to make the 1st control move at

time T equal to K and clearly because always control moves take some time to affect the

output, this is already there, so it is not going to get affected. So, from an output viewpoint,

every output after this move is made is going to be affected.

But since we are looking at discrete formulation, we are looking at outputs at specific time K

+1, K +2, K +3 and so on. So because of this input move, Y at K +1, K +2, K +3 and so on

will be affected. And what we are saying is unlike the standard PID controller where we will

look at this move in a continuous domain, what we are going to do, since we are anyways

talking about the horizon, over which we are looking at minimising the errors in the output,

will also look at the horizon on which we are going to plan our manipulated variable moves.

So this is UK value and which is as yet unknown, so we do not know what this value is. Only

when we know this value, we will be able to predict, that is how we are going to connect

these values to the predictions through a model with we will see later. As of now, if you just

think about this as variables, so UK is available for which I need to find the value, UK +1 is a

variable for which I need to find the value, UK +2 is available for which I need to find the

value and so on, all the way up to U of K + M -1.

So, if you take a look at this, there are these M variable for which we need to find the value.

And based on these values, the output will change. So, the idea of optimisation is how do you

choose these values so that these outputs are as close to Y setpoint as possible, okay. So, that

basically means if I make some decisions for this, how will it affect the output is something

which I should bring it, that is why the notion of model, then, which we will see as we go

along.



But as far as we are concerned, these are the variables and the constraints are written in terms

of the decision variables or functions of decision variables as I talked view before. So, you

might say if I have a control input, such as a flow through a pipe, we already discussed this,

there might be a minimum value and a maximum value it will have. Minimum value if it is

low, it is going to be 0 or the maximum value is going to be, when I keep the eyes completely

open, what is the flow and so on, okay.

So every value I take care, U has to be between U lower and U up. I have thoroughly written

this for the input U, so since each of these variables represent the same U at different times,

so this constraint should be obeyed by everyone of these, okay. Though I have UK, UK +1,

these are  the same inputs  but  at  different  times.  If  the general  input  itself  is  constrained

between lower and upper, then the input at every time instant should also be constrained

between the lower and upper. 

So, basically if I want to generalise this and write this, so this is on the U input itself, if I want

to generalise this and that this as caskets at every instant in which I make a change to U, so I

will write this as U lower lead than equal to, U of K less than equal to U upper and this is the

mathematical notation for all K. So, irrespective of what the K is because this U of K is still

representing the same input but at different times, okay. So, that is the constraint you have.

So, this is written tenderly but you have to write this for U at every time instants, so those are

constraints on U.

And similarly when we make a change, so this basically talks to some constant, generally on

the U itself, what values it can take, where it should be, so that is one type of constraint. The

other type of constraint is at a particular time, how much can I remove this letter you buy. So,

if I am here, okay, if I move this year, so the difference is this point was UK -1, this point is U

of K. So, if I define Delta U at K as UK - UK -1, so this is where I was at, once I get UK, I

compare, so the delta difference is UK - UK -1.

Then what typically happens in control systems is there will be a constraint of how fast I can

move by control  work,  right.  So,  in  a  very  short  time in  which  I  am going to  take  my

manipulated variable to a new value what is a way that I can do this. So, I can directly give a

constraint on Delta U. Now, again I have written this as for the input itself, so the delta U

change basically tells you how much you can change at a particular sampling time and much

like how I got here, here also I have to have Delta U lower less than equal to Delta UK. 



And delta UK is always defined as the difference between what value I chose at K and what

value it was that K -1. So, if it is UK +1, it will be the difference between, if it is Delta UK

+1, it will be the difference between UK +1 and UK and so on. So, much like how I said this

is for the actual controlled input and this has to be applied at all UKs, this Delta U is also for

the same controlled input  but at  different  times I  am taking these deltas.  So,  this  is also

applicable for all Ks at different time instances of making the control move, then I will have

this Delta U Upper for all K, very similar to what I had here.

So, these are the kind of constraint that we look at when we formulate the model productive

control  problem.  Now, this  constraint,  I  spoke  about  this,  now  this  constraint  says  that

whenever I make a move, what is the limits that I can kind of achieve, right. So, some limit

that I have. So, while there is an overall limit in terms of the actual value itself, that is also a

limit, this limit should be applied on Delta U everytime I make a delta U. So, in other words,

if I am here, I cannot make a delta U like this, there is a limit on this.

So in this case, clearly the way we have drawn this, the delta U will at least be something like

this because all of these values should be within that limit, okay. So, this Delta U limit will be

fixed internal or you could make a change over a period of time. So, if this is a fixed limit,

then you can say this is the maximum delta U we can take or you could, you could have

things where the changes from sampling time to sampling time, if your application really

calls for it. But in general this is actually a physical hardware constraint. So you will say this

is the maximum delta U I can take.
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Now we have talked about 2 of the components of the optimisation formulation, one is the

objective function and the other one are the constraints and the constraints are of 2 types, one

is on the range of U itself by the other one is on the range of Delta U. So, once we have these

2,  the  3rd  component  is  actually  the  decision  variables  and  the  decision  variables  are

available for which I have to find values and in this case I have to make a decision about the

control move plan, what are the control variable values that I am going to have.

So this is the same controlled input but at different times, again just to reiterate. So, have to

make decisions about what value this controlled input will take at time K at K +1, all the way

up to M -1, these are the M variables that I talked about. Okay, so now you see how the MPC

formulation  has  become an  objective,  optimisation  formulation.  From this  picture  if  you

understand these equations, then you have basically understood the main concept of MPC.

So, the objective function tells you that you are trying to minimise error.

In some cases when you want to generalise this, you might say I do not want to just minimise

the other but I also want to minimise the control effort that I take, which is I do not want to

take very large control moves U because that takes money and effort. It might be that the

objective function is not only the error squared that I have, this is a generalisation of the

formulation. But also this U square, what this U square tells me is if I take very large control

moves, this will be large, which will be bad for minimising the objective function.

So I want to keep the move sizes as small as possible. So, in some sense what it says is how

close can I get to my setpoint without expending too much effort, which is typically what we

do in all of the problems that we solve. So, we have a goal, we want to get to that goal at the

same time many times we want to see what is the kind of minimum effort that is possible to

get to this goal. Not simply because maybe we are lazy, it is because once you minimise the

effort toward this goal, you have more time to pursue other goals that you have, that you want

to pursue.

Very similar  idea in  control,  so this  is  your  pursuit  of your  goals which is  going to  the

setpoint at this is the effort that you need to put into to get into that setpoint. So, in some

sense you want to minimise both of these, that is you want to minimise how far away from

the goal you are and you also want to minimise the kind of effort that you are going to put in.

So, this is the objective function. Now the beauty of model predictive control formulation is

that, you could just do this part of the objective function, or you could add both of these, or



you can wait for these objective functions using weighting factors which will tell you what is

the relative importance of this.

If lambda 1 is much greater than lambda 2 and then they importance is I want to be very close

to my goal, irrespective of the amount of effort that it might require. But if you say lambda 1

and lambda to our  kind of  stealing  them, so that  these  terms are  equal  to  each other  in

magnitude, then the question is, well, I want to get to my goal but I want to have a balanced

life, so I do not want to do crazy effort, I want to also kind of balance between how fast I

achieve my goal and the amount of effort that I need to put in.

So, once you have these things, then you can start thinking about these objective functions

more  conceptually  and  then  you  can  formulate  objective  functions  that  you  can  solve.

Ultimately if you are simply going to solve this as an optimisation problem, you could even

come up with any kind of nonlinear objective and then say let  us solve this optimisation

problem. So, what you are doing in model predictive control is you are moving all the efforts

into solving this problem to an optimiser and as long as optimiser keeps getting better and

better.

So you have better nonlinear optimiser, you have better constrained optimisers and so on,

then  you  could  actually  formulate  any  problem  you  want  and  the  formulation  is  very

intuitive, you know why you are writing each objective function term and the formulation

becomes intuitive. And the solution, you do not never worry about because it is an algorithm

that is out there which will solve an optimisation solution. So, that is the key idea here. So,

this is objective, we already talked about this constants and these are generically written for

you.

So this should be converted to UK at every K because the UK also represents the same U,

similarly delta UK also represent the same input, so this should be applied at every time

instants,  as this would be applied at every time instant.  So, this is a constant part  of the

objective. From a control viewpoint, what this Physically says is that the input moves that

you are planning should all obey physical constraints, such that this objective is minimised

and I have these as the decision variables UK, UK +1 and so on.

So, just to be sure that you make explicit, so when I expand this, I will have U lower less than

equal to UK less than equal to U Upper for K. So, I can even say, since I am using K here, so

let me use i here, Ui for all i K +1 to K + P, okay. So this is how this is expanded. Similarly



you can also expand this and this K in this light talks about the time instant at which we are

sitting and then this is all prediction into the future. And these are control moves into the

future, UK, UK +1, UK + and -1 and so on, okay.
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So, this is going to be K to K + M -1 because this is talking about the control moves. So, this

is how I combine this and put together formulation for model predictive control. Now, in the

last slide we talked about the formulation, we talked about the notion of horizon and how all

of this are combined into a mathematical formulation. So, the next question that you might

ask is okay, where is the model in all of this? So, you have written Y, you have written U, you

have written an objective function, and you have written constraints and so on but where is

the model in this?

So, as I said before, remember when we talk about this, when I am sitting at time T equal to

K, I have this output and I have these inputs I am going to make. Now I do not know the

values of this and I have not made decisions yet how about these also. Okay, however the

formulation is going to relate the decisions I make to what happens here, right. So, if I want

to make decisions here, then I should somehow figure out what is the effect of the decisions

on the output, so that I can actually say this will be effective and I want to compare that

effect, whatever I get with the setpoint.

So that is the basic idea of optimisation. So, in that sense what I need really is somehow I

have to connect what moves I planned to make in the future to what will be the impact and

this is where the model comes, okay. Now in many cases we have looked that models which



are continuous models but in this case what we are interested in is, the move plan that I am

thinking about are UK, UK +1, all the way up to UK + M -1. I want to know how these are

going to affect YK +1 all the way up to YK + P.

So, these are future outputs that I am expecting. So, the move plan that I have when I actually

implemented this move plan, what will be the output, right. Now, this output I am going to

check how close they are to setpoint and I am going to make changes to this so that these

outputs are as close to setpoint as possible. And this is where model comes into picture. So,

we will explain how model comes into this to complete the whole MPC formulation in the

next lecture, thank you. 


