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In the last lecture I talked about the conceptual idea of model predictive control and then
talked about the notion of an optimisation problem that we will solve, the notion of control
and prediction horizons and basically explain how we are going to look into the future and
then ensure that the future predictions are as close to the setpoint value that possible. And to
do this we make what is called the move plan, that is what is the control move that I am going
to make at the current instant and also into said the number of future instants, so that the

mismatch between the predicted output and the setpoint are minimised.

In this lecture we will look at how we formulate this problem in terms of an optimisation
problem. Since we are going to talk about an optimisation problem, I will also give a very
very quick introduction to how optimisation problems are solved. In fact I am going to just
use a couple of slides to quickly show you how these optimisation problems are solved, so
that you can understand model predictive control in lot more detail and your understanding

about model predictive control can be little more complete, so that is the basic idea.

(Refer Slide Time: 1:48)

MPC Concept

So, just quickly summarising from the last lecture, we talked about Control horizon, which is
having a control move plan. So, basically if I am sitting at time T equal to K, if I am making

control move plans, since I am still talking about SISO systems here, I have to make



decisions about values of U at M steps. And what those M steps are, are UK, UK +1 and all
the way up to UK + M -1. Okay. So, if you think about this, this is the 1st decision I have to
make, what value that should be input take at time K and the 2nd decision is what value

should the input take at time K +1.

And Mth decision is what value should U take at time K + -1. So, these are the M value that |
have to choose for this control move plan. And since it is a SISO system, there is only one
manipulated variable, so there are M values for this 1 manipulated variable that I need to
identify. Okay, so that is how this part of the picture works. And now what criteria will I use
to identify these values is where I want to use the criteria where the future predictions are as

close to setpoint as possible.

So how would I decide this, how would I come up with the criteria to do this is what we are
going to see the next few slides. So, in some sense if you think of the error as error at K +1 is
Y setpoint, whatever value I keep mine is Y at K +1 given K and error that K +2 is similarly
Y setpoint - Y K +2 given K all the way up to error at K + P is the Y setpoint - Y K + P given
K. So, then basically, somehow I have to come up with criterion which jointly or collectively
minimises all of these values. So that is a very important idea. So, the optimisation problem
should have some way of a jointly or collectively minimising all of these errors is what we

are looking at.

(Refer Slide Time: 4:18)
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So from an MPC formulation viewpoint, what we are saying is we want to formulate this

model predictive control as an optimisation problem, okay. And whenever we talk about an



optimisation problem the optimisation problem usually has 3 components. So, if you
understand these 3 components, then you know exactly what is happening. So, there is
always an objective function f of x which is basically a scalar function in simple optimisation
problems. It can also be vector functions when we talk about multi-objective optimisation
problems and so on which all far too advanced as far as we are concerned from this course

viewpoint.

So as far as this course is concerned, the objective function is some function of variables and
it is a scalar function. Now, when I say this is a scalar function, this x can be several variables
that you are trying to optimise. So, typically an objective function for the cases that we are
looking at will look like this, there is some function of x1, x2, all the way up to xn, so there
might be looked n variables, m variables, whatever it is. So, this is an objective function and
now we call these variables which are part of this function and we are basically looking for

what these variables should take in terms of their values is the things that we are looking for.

So, basically what we are saying is whenever I have an optimisation problem, I have an
objective which is a function of several variables and I am going to make decisions about
what values of these variables should take. So, these are then called the decision variables x1,
x2, all the way up to xn are the decision variables. And basic idea is I am going to make
decisions about these variables such that this function is either maximises or minimised,
okay. So, in other words what we are saying is what values of these variables will maximise

the function or minimise the function, okay. So these are called decision variables.

And a typical optimisation problem also has constraints, the constraints could be these
variables have to be between lower bound and an upper bound. So, this is the constraint or
some other functional former which involves these variables are between some values and so
on. So, you can have several types of constraints here, so the constraints are usually are the
decision variables themselves or some functions of decision variables. So, it can be either
directly on decision variables or some functions of decision variables, okay. So, that is

basically very very compact, very quick, simple explanation of an optimisation problem.

Now there are several types of optimisation problems depending on what type of constraints
you have, what type of variables, what type of functions you have and so on. And we are not
going to talk about all of those here, so we are going to keep it very simple, very focused
towards the type of optimisation problem that we need to solve for solving model predictive

control related problems, okay. So, really the summary of this is that an optimisation problem



has 3 components, you have to define an objective function, you have to define constraints

and you have to define the decision variables.
(Refer Slide Time: 7:58)
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And when you actually define the objective function, the decision variables are also defined
because you actually write the objective function in terms of these decision variables
themselves. Let us see how all of this fits into this MPC formulation idea. Before we do that,
let me explain how you find an optimum solution, so that it becomes easy as we go along, I
far as this model predictive control is concerned. So, again I said f is always a scalar function,
this is a function that I am either trying to minimise or maximise. Typically people will talk
about minimisation problems, most of the times because maximisation problems can also be

solved as minimisation problems.

So, you do not have to really worry about whether it is a minimisation or maximisation
problem, both of these are completely equivalent. So, we will basically only focus on
minimising say an objective function. So, while you write optimisation formulation, I said f'is
a scalar variable, now within f, the decision variable could be one or many, if that is only one
decision variable, it is called univariate optimisation. If there are more than one decision
variables, let us say even 2, that this is called the multivariate optimisation problem, okay. So,
more than 1 or single univariate. So, let us look at a very simple univariate optimisation
formulation here. And these are some typical ideas that you have seen hopefully in some

other cause or at your high school level.



So, when we write an optimisation problem, I mentioned in this lecture that you are going to
have an objective function, decision variable and constraint. So, the way you write this as this
is your objective function and this is your decision variable, so typically you write min and
below that you write the decision variable, you write the function here and these are
constraints. So, x elements of a real means, now extend take any value here but in some cases
you might say x is less than equal to 1, less than equal to 0, okay, so this could be a

constraint, okay.

So, you can think of any constraint and as I said before, the constraints are written in terms of
the decision variables or functions of decision variables, so, both are possible. Now, you
might ask, so what is this optimisation problem solving? So, suppose you were to plot the
function f of x as a function of x, what this optimisation problem is trying to solve is it is
trying to find the value of x star at which the function takes the smallest value because we are
trying to minimise this here, right. So, that point would be this year because any other x if

you take f of x, will be larger than this.

So the absolute smallest value that f of x can take for this function will occur at this x star. So,
when we solve this, what we are going to get as a solution is basically this x star. And once
you get this x star, then you can actually find what the minimum function value is by
substituting x star and f. So, from x star you will get f of x star, which is the minimum value
of the function. But the key result that any optimisation problem that we are looking for is the
solution which is the values of the decision variables should take so that the function is

optimised, in our case minimised. Okay.

So you can think of an outcome of solving an optimisation problem as values for the decision
variable. So, this is very very important to remember because when I connect this to control,
we are going to write the optimisation problem with the decision variables which are the
move plans, right, the choice for the input values that we talked about, right. So, I have UK,
UK +1, all the way up to UK + M -1. So, those M variables, if I can find values for that, such
that some objective is optimised, then I have my move plans. So, that is the connection

between control, model predictive control and optimisation.

So this is something that you should keep in mind. So, the outcome of solving in optimisation
problem is the solution and the solution is basically telling you the values that the decision
variables should take so that the objective is minimise, okay. So, in a simple case, this is

called a Uni model function, in simple cases there is only one optimum solution which is this



and you can get this x star. But in more complicated cases, you could have functions which

are like this, these are not Uni model functions, they have more than one minimum.

So, if you look at this point here, if you look at in the locality of this point, you will clearly
see that this is the lowest value it can, this function can take at this point. So, this is called the
local minimum x1 star and if you look at around this region, then the lowest value the
function can take is lower than this and the decision variable value at which this happens is
x2 star, okay. So, this is called a local minimum, this is called a global minimum. Now, I do
not want to get into too much optimisation theory , let me just tell you that it is very difficult
once you identify an optimum solution based on certain conditions which I will show you the

next slide.

Very difficult to identify whether it is a local or global minimum. You might ask a question
saying why is it difficult because if I find this point and this point and then I compute the
function value, is clearly this point function value is going to be lower, so this is a global
minimum and local minimum. However the difficulty lies in identifying all these points, so in
other words supposing you started optimisation problem and then you identify this point
based on some conditions, now once you, this point will satisfy all the conditions that are

required to be satisfied for a point to be a minimum and you will get a function value.

Once you get this point, you do not know that there is another point that exists like this. So,
you have to run an optimisation algorithm again to find this point and then compare, right.
Will you find all these points, you can never claim something gives local or global minimum.
Right, if 1 had only this point, I cannot claim, it is either local minimum order global
minimum, unless a priori I have proved something which is again not at the level of this
course. But the key point being once identify this point, I cannot say it is a local or global

minimum, unless | innumerate everything else and then find the function value.

And then see that this is the absolute low value, then it is global, if it is not the absolute value,
then it is a local minimum. So, this is another consideration to keep in mind as far as we are
concerned, this is not really an issue. So, we will also that whatever point satisfies all the
condition for being a minimum, we are going to simply take that and proceed with the control
computations. So, that is how we are going to look at when we talk about this optimisation

from model predictive control viewpoint.



Nonetheless, 1 thought this is a very simple picture to explain the idea of local and global
minimum without going into details so that you understand as we start understanding model
predictive control itself, that at all points we are talking about local minimum. If the control
or formulation is in such a way that I can show that the function is going to be of this form,
then we do not have to worry about this local minimum at all because there is only one
minimum and once you find a minimum, you know that is a solution that you have to live

with.
(Refer Slide Time: 15:34)
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Okay, so let us take a very simple example. This is something that would have been taught to
you in high school. So, you have a function f of x, the decision variable x and clearly I write
the function in terms of the decision variable. Now I want to find the minimum point x star
for this function. Then we know from our high school and probably some courses in your
college that if you have to get the minimum point, what you do is you differentiate this

function with respect to x.

So, when you differentiate this, you get 12 x cube -12 x square -24x equal to 0. Then you can
solve for f Prime x is 0, then you will get these 3 solutions in this case, x equal to 0, x equal
to -1 and x equal to 2. So, these are 3 solutions. Now, what this means if these 3 are all
optimum solutions, okay. And based on some calculations, we can either find these to be
minimum points or maximum points or what are called the saddle points and so on. So the
way you do that is the following. You take a 2nd derivative and then if you take a 2nd

derivative of this, 12 x cube -12 x square -24x will become 36x square -24x -24.



Now when you substitute x equal to 0 is this, you get -24, when you substitute x equal to -1,
you get 36 and when you substitute x equal to 2, you get 72. So, now one you get the 2nd
derivative, if you want to did defy the minimum points, whenever the 2nd derivative is
positive, these are points that are minimum points. So, in other words of these three, -1 and 2
are minimum points and 0 is the maximum because this is negative, 2nd derivative is
negative. So, 2nd derivative is negative is maximum and 2nd derivative is positive is a

minimum point.

So, even in this case you already see that there are 2 minimum points. Now if you want to
find which is the global minimum, then you have to basically substitute these values full so
you take these 2 minimum points and substitute into f. If you substitute x star as -1, you will
get a value for f of x which is -2. And when you substitute x equal to 2 is f of x, you get -29
for the function value. So, among these 2 minimum points, this x star equal to 2 is the global

minimiser of f of x. So, this is the basic idea of univariate optimisation.

So, take a look at the slide, please go through the derivations yourself and basically as long as
you are able to come to the same conclusion, you have understood very simple univariate
optimisation. The only thing is this f double prime is greater than 0 for a minimum point and
f double prime is less than 0 for maximum point, okay. So, these 2 are minimum points, this
is the maximum point, okay. So, this is a very simple idea. Now, if the same thing you have to

extend it to multivariate case.

So when we talk about, the function is still a scalar function, there is only one f. When we
talk about multivariate, now instead of just one decision variable, there will be more decision
variables that we have to make a decision about in terms of what values that they need to
take. So, how is the multivariate case handled is what I am going to show you in the next
slide. And that is a simple logical progression of this. I am not telling you why for a minimum
point f Prime has to be 0 and maximum point f Prime has to be 0 and f double prime is

negative is the maximum point, f double prime is positive is a minimum point.



(Refer Slide Time: 19:53)
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Why that is all is true is something that I am not describing or discussing here. I just want you
to understand how these are solved, so that you get a feel for how model productive control
problems are solved in terms of solutions to optimisation problem. Now, as I said before, if I
have a multivariate optimisation, again that is only one function but instead of the function
being you know defined by one variable, in this case the function is defined by both the
variables x1 and x2. So, this is to variable problem, so let us assume now fis a function of x1

and x2, how do I find out a value for x1 star and x2 star.

Because when we have more decision variables, we have to be able to say a value for each
one of these decision variables, okay, only then we solve this problem. So, the idea is very
simple. When I have only one variable, it goes just f Prime x is 0. When I have more than one
variable, so basically you do a partial derivative with respect to each of these variables, dow f
dow x1 is 0, dow f dow x2 is 0 all the way up to dow f dow xn is 0, okay. Okay, now if I have

n variables, I will have n equations, right. Because I will have n derivatives to evaluate.

If I have 2 variables, I have 2 equations. So, in some sense [ will have as many questions as
variables to solve for, okay. So, if you apply this, we have to say dow f dow x1, dow f dow x2
is 0. So, in the vector form you can write this as grad f, which is basically reading these 2
functions one below the other, that is about it. Or you can look at them as individual
equations and solve, really does not matter. So, when we do dow of dow x1, partial of x1 with
respect to x1 is 1, partial of x2 with respect to x1 is 0, partial of symbol 4 x1 square with

respect to x1 is 8 x1.



Partial of x1 x2 is x2 with respect to x1. So, I have dow f by dow x1 is this. And similarly if I
go dow f dow x2, partial of x1 with respect to x2 is 0, partial of 2 x2 with respect to x2 is 2,
partial of 4 x1 square with respect to x2 is 0, partial derivative of - x1 x2 with respect to x2 is
- x1 and the partial derivative of this with respect to x2 will be 4 x2. So, have 2 equations and
both of them have to be 0. Now, have 2 equations, 2 variables, I solve this, there is only one

solution I get and this solution could be a maximum or minimum.

That you actually identify by doing what is called a Hessian matrix. And this is far too above
what we want to teach in this course. But just quickly I will explain this to you. What you do
is you to this 2nd derivative matrix, in the one variable case we look that f double prime x, in
this case we look at a matrix a which is dow square f dow x1 square, Dow square f dow x1
x2, Dow square f dow x2 x1, square f dow x2 square. So, once you compute this matrix in
terms of x1 and x2, you substitute the solution that you get x1 and x2 into this matrix, you

will get a matrix like this.

Now simply if this matrix is what we call as positive definite, so if this matrix is positive
definite, then this point is a minima and if this point is negative definite, that this point is a
maximum. Right, so I am not defining positive definite, negative definite and so on. But this
is how you figure out whether this point is the maximum or minimum point. As far as we are
concerned, we know that we can find a solution to as many variables as we want, right. So,

this function could be a function of multiple variables, we will never run out of equations.

So, if there are 3 variables, then I will have 3 partial derivatives to set to 0, if there are n
variables, I will have n partial derivatives to set to 0. So, one thing that I want you to
remember is once I write this objective function in terms of multiple variables, I can always
find a solution. Once I find a solution, whether it is a maximum or minimum point, have to
figure out by doing a Hessian and then finding out whether it is positive definite or negative
definite. You do not have to worry about this, you simply have to understand that once I have

a solution, there is a way to find out whether it is a maximum or minimum.

And any software program that you use to solve these optimisation problems will be able to
do this computation, basically tell you that this point is a maximum point, minimum point
and so on. So, this is just to understand that it can be done and the procedure by which
software will do this. But as far as you are concerned, as far as this model predictive control
portion of this course is concerned, all we need to know is that we can solve this objective

function when it has multiple variables because this is an important idea.



And let me make the connection again. So, the reason why we are interested in multiple
variables is because when I am making a move plan, have variable UK, UK +1, all the way
up to UK + -1. Though they all represent the same control input, these are values the control
input will take at different points. So, I am going to think of them as separate variables and
then I am going to formulate an optimisation problem based on these variables. And I have
told you that once I formulate an optimisation problem, I can always solve and get a solution

to all of this UK all the way up to UK + -1.

Once I get a solution, whether it is a minimum or maximum point, you do not have to worry
about that. Whatever programming platform you are using to solve these problems will be
able to tell you what that is and in fact we will work that into the solution process itself. So,
now that you have understood basic optimisation, how we approach optimisation problems,
the next step is to really pose the model predictive control problem in terms of the horizon
and so on as an optimisation problem and show you how we can solve this optimisation
problem so that we can actually get a model predictive controller going. I will see you in the

next lecture, thanks.



