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So let us continue with this 26th lecture in this course on process control analysis design and

assessment and the last lecture on the miniseries of lectures on NYQIUST stability criterion that

we have talking about.

So in the last  two lecture I talked about the S plane the F of S plane and how you convert

contours in S plane into an S plane and we also looked at a very interesting result which said if

you draw contour in the S plane if you encircle amount of zeros and poles of F of S inside the

contour and then as you move along the contour you keep tracking how F of S changes and that

is a very simple thing because once you have a S value you can simply compute F of S and plot

it in the F of S plane and if you track that and then you finally look at the F of S plane contour

and the count the number of encirclements around the origin then the number of  encirclements

will give you Z minus P where Z is the number of zeros inside your closed contour in the S plane

and P is the number of poles of F of S inside the closed contour in the S plane.

So that is very interesting and remarkable result which we can use for analyzing a stability of

time delay systems, now there are lots of mathematical arguments and so on why this is true and

there are things that you need to do to draw this contour such as excluding at the poles or zeros

on the S plane contour itself and so on but those are complications which we will not really focus

on in this course because there is a first introduction to this idea nonetheless what I want you to

realize  is  while  doing this  while  I  showed you examples  where  we wrote  the  F  of  S  as  a

numerator by denominator polynomial I showed you because we are just computing F first four

different S and doing nothing else the numerator and denominator could have the E power minus

tau DS done.

So that simply does not create any problem at all because for any S I can compute E power

minus tau DS, so ultimately this E power minus tau DS term whether it comes in the numerator

or denominator with other polynomial term for every S on the contour on the S plane you can

simply compute this F of S and once I tell you that whatever result that we saw is also true even



if you have E power minus tau DS terms then it clearly says now that we have a way to analyze

the stability of time delay systems that is a connection that I want you to realize, now I also

toward  the  end of  the  last  lecture  showed you how these  results  are  useful  for  closed  loop

systems where I said we want to cover the whole right half plane to ensure that there no zeros of

one plus GC in the right half plane.

So I  said  what  we do is  we start  on  the  imaginary  axis  at  minus  J  infinity  and then  keep

traversing the imaginary axis all the way up to J infinity and then we take a long circular route

covering all of our HP and then come back to minus J infinity and this you can imagine just in

your head that this is a clockwise movement in the S plane you might think about how am I

going to compute all of this right so there are programs that will do this and you do not have to

do anything in terms of computation.

So in you labs that go with this you will see these NYQUIST plots what you really need to do is

have  the  ability  to  interpret  them  and  interpreting  this  plot  simply  means  computing  are

calculating number of encirclements around an origin in  the F of S plane plot, so if there is some

software code which gives you this contour in the F of S plane all you need to do is really look at

that and then be able to count the number of encirclements and use this idea of N equal to N

minus P to do you whatever you want, so that is important thing to keep in mind.

(Refer slide Time: 04:43)



Now we will come back to the way in which we are going to use this in control we have already

seen this picture here this is how we convert this notion of closed contour to cover the over

whole of our HP right offline is completely cover when I take a contour where I start moving

from minus J infinity all the way up J infinity and then go on the circular route, now let us go

back then understand each of these bullet  points so that  the translation  the general  result  to

control is very clear I am going to reiterate the fact that this can be done for E power minus tau

DS also because  I have already said this many times all I need is an F of S function for any S I

can compute F of S.

So we have already subside idea of doing this for time delay systems in all the discussions we

have  had  till,  now let  us  look at  each  one  of  these  bullet  points  and then  see  whether  we

understand this carefully so first if you assume that the process itself is stable then GC will have

no poles in RHP, so let us see whether we understand this so let us look at G which itself is some

numerator by denominator C is also some numerator by denominator clearly we are not going to

design controllers which are unstable, so we are assuming that there are no poles of the controller

in the right half plane and if the process is stable then D of S is also not going to have any poles

in the right half plane.

So GC which is some numerator let us say by denominator when I put this together will have no

poles in the right half plane.so if the process is stable GC is not going to have any poles in the

right half plane, so this is something that we should understand, now the second thing is if GC is

N1S  over  D1S  basically  D1S  is  the  polynomial  denominator  polynomial  from  which  you

compute all the poles, now look at what will happen if I have one plus GC, so one plus GC will

be one plus N1S by D1S, so this is going to be D1S plus N1S by D1S, so if you look at GC and

one plus GC the poles of GC and the poles of one plus GC are the same, so that is the first bullet

point.

So basically what it says is if you assume the process is stable then GC will have no poles in the

RHP, that is from this notion here and when you actually write one plus GC you write one plus

N1S by D1S which is D1S plus N1S by D1S so the poles of GC plus one plus GC are the same,

so this is first bullet point which we have understand, now the next bullet point basically takes

this idea to this which plot and the F of S that we are going to use to plot all of this is going to be

one plus GC and now this one plus GC has some zeros and poles.



So now let us look at one plus GC and then as we go along this very long infinite path, starting

from minus J infinity all the way up to J infinity and go on the circular route covering all of RHP

we want to ask whether this F of S which is one plus GC because we are going to draw this

NYQUIST plot for one plus GC initially and then we will refine it further.

So when we look at this F of S as one plus GC, so we are doing this plot here and then we are

going to get a corresponding plot here now within this will this F of S have any poles in the RHP

if you ask that question, now the answer is it will not have any poles in the RHP this process is

stable why because if the process is stable we already said GC has no poles in the RHP and the

poles of one plus GC and GC are the same and since GC has no poles in RHP one plus GC

cannot also have any poles in the RHP, so within this big circle by looking at the encirclements

we already know we can see the difference between the Z minus P, but as I said before we cannot

individually compute Z than P but in this case if the process is stable we can guarantee that this P

is zero for one plus GC right.

So why is P is zero plus one plus GC because poles of one plus GC are the poles of GC and G is

stable controller will choose it to be stable, so we will have no poles, so for stable systems then I

look at this contour like this when I go from minus infinity to plus J infinity and all the way

through a large circular path then when I look at this encirclements if the process is stable and

the F of S that I am considering is one plus GC poles are zero so the result is N is Z.

So the number of clockwise encirclements will be equal to the zero of one plus GC this the most

important and interesting result from a control viewpoint, so basically what this says then if that

if I have let us say one clockwise encirclement of plus GC right, so that basically means Z equal

to one so within this large contour this one plus GC has at least one zero is what it would mean if

I see a clockwise   encirclements are on origin in the NYQUIST plot so that would mean then the

closed loop is unstable, why is the closed loop is unstable because we already said GC by one

plus GC and if I take this GC as some numerator by denominator one plus GC will be B1S plus

N1S by D1S, so this and this will get cancelled.

Now the denominator of GC by one plus GC will be the numerator of one of one plus GC, so any

zero of one plus GC will become a pole of GC by one plus GC, so if I have one encirclement that

means there is one pole for one plus GC one zero for one plus GC in RHP which becomes a



poles for GC by one plus GC in RHP, which makes the system unstable, so basically what we

have done is we have reduced the identification of stability to simply counting the number of

clockwise encirclements of one plus GC around origin that is a beautiful and simple result here. 

So this then says if there are no clockwise encirclements of the origin in the F of S plane which is

one plus GC then there are no zeros of one plus GC in RHP because no clockwise encirclements

will mean N equal to zero we already know P is zero N is equal to Z minus P, so this is zero, this

is zero, this has to be zero of one plus GC in RHP that means no poles of GC by one plus GC in

RHP.

So remarkably by just looking at this  F of S plot or the NYQUIST plot we are now able to

guarantee that you might have infinite expansion polynomial in the denominator because of your

E power minus tau DS and so on but we are going to guarantee that is going to have no zero in

RHP that means you might have infinite number of zeros but I am still guaranteeing that nothing

will be in RHP by just doing this contour plot without actually ever computing the poles our

zeros of the transfer function.

So that is the most interesting and beautiful idea here right, so all I am saying is you simply get

this  plot  look  at  the  clockwise  encirclements  around  origin  if  there  are  no  clockwise

encirclements around the origin that means that means your closed loop is stable and there will

be as many clockwise encirclements around origin as there are zeros in the right half plane for

one  plus  GC  right,  so  if  one  plus  GC  have  three  zeros  then  I  will  have  three  clockwise

encirclements because N equal to three minus P, P is zero already because we know the system is

stable.

So that is how the whole idea of NYQUIST stability is translated to time delay system and it is

translated to time delay systems because F of S can be any functional form I need to simply

compute the F of S value as I go through this contour and this is done using software and you

will basically have these plot which we have to interpret, so if you understand each one of these

points clearly and explained this here then basically understand how to use this NYQUIST plot

for stability.

Now just a point a point if you know that there are no encirclements clockwise encirclements

then you know that the system is stable and this result is true for processes that are stable but I do



not want you to think that this result is restricted to analyzing stable processes a simple extension

is supposing you know that your process is unstable and you know that your open loop process

have let us say two poles in RHP.

So let us take that case just wanted to kind of explain to you how this result extend to unstable

processes also supposing you know that there are two poles of your process of processes in RHP,

Now when will I say once I design a controller the closed loop system is stable, now you do not

have to change anything this result you are going to use to understand this, so we know N is Z

minus P and when I look at one plus GC we have already said the poles of GC N1 plus GC are

the same, so if there are two poles of G seen RHP from this fact then there has to be two poles of

one plus GC also in RHP, so when I do this infinite contour for stable systems I put P equal to

zero for unstable systems I have to put P equal to as many poles in the RHP as there in your

process transfer function open loop process transfer function.

So if I know that there are two poles in the RHP then P is two, so I have N equal to Z minus P

which is Z minus two, now if the system if stable then what will happen is Z has to be zero that

means I have to see two anti-clockwise or counter clockwise encirclements around the origin so

if N is minus two, so for your closed-loop system as you plot this one plus GC if you look at the

plot and then you find that there are two counter clockwise or anti-clockwise encirclements of

origin then N is minus two so this will be Z minus two Z, so there are no zeros of one plus GC

which means a closed loop is stable right.

So the open-loop is unstable with two poles and if you design a controller in such a way that

your NYQUIST plot shows two anti-clockwise or counter clockwise encirclements of origin then

that basically means that there no zeros for one plus GC in RHP which is what is critical for

closed-loop stability, so this  is  how you use the same result  analyze closed-loop stability  of

unstable systems.



(Refer slide Time: 16:44)

So now the  last  bit  of  result  that  we are  going to  use  is  the  following this  is  summary  or

restatements of whatever we have seen for a closed loop to be stable, basically Z has to be zero

that is the number of zeros of one plus GC in RHP and the number zeros of one plus GC in RHP

will give you the number of the closed-loop transfer function in RHP as long as that is zero the

closed-loop transfer function does not have any pole in RHP, so from the rule N equal to Z minus

P if Z is zero N equal to minus P, so whenever Z is zero N will be minus P, so if I have as many

counter clockwise encirclements of the origin as there are unstable open-loop poles then the

systems is stable.

So that is the main result because that comes from N equal to minus P if they have three open-

loop unstable poles I should have three anti-clockwise or counter clockwise encirclements and

similarly  if  I  have  one  I  should  have  one  and  son  on,  so  this  is  a  result  which  basically

generalizes this was stable and unstable processes, now if the open-loop is stable then P is zero

and should also be zero there should be no encirclements now one last thing whenever these

plots are given since we are interested in one plus GC we were looking at encirclements around

origin on zero but typically the plots what they do is they do not plot one plus GC F of S is not as

one plus GC typically the plots are for GC.

So if you want to get GC from one plus GC you have to subtract one here so whatever is an

encirclement around zero when I plot for GC I have to look for zero minus one, so I have to plot



look for encirclements around minus one and zero in GC plot, so till now we have just been

talking about looking at encirclements around origin because F of S we were considering S one

plus GC but for sake of convenience what people do is they do this NYQUIST plots not for one

plus GC.

So all I am saying here is if you want to go from one plus GC two GC you have to subtract one

from one plus GC so if you are looking for zero encirclement around the origin in the one plus

GC plot because to go from one plus GC two GC I have to subtract one similarly the zero would

move to minus one zero, so basically you look for encirclement around minus one zero, so that is

all  the final difference because this is how most people report the NYQUIST plot in control

systems, so I hope this is clear this is just where you look for encirclements nothing more.

(Refer slide Time: 19:31)

So in summary we said whenever I have GC by one plus GC typically we have been saying this

is  some numerator by denominator  and then you can look at  the stability  of the systems by

looking at the poles of D of S and if I can get it in root result form then I can use partial fraction

then we talked about root stability table when I do not write it in root to solve for and then when

we came to time delay systems we got into this issue of this term having E power minus tau DS

in it is functional form then we said we have to look at some way of handling this that is where

we came up with this notion of NYQUIST stability where the key idea is if I have an S plane and

I am doing encirclements around something in the S plane.



I am looking at how it is going to look like in in F of S plane the same encirclement and we got

this result which said that the number of  encirclements of origin in F of S plane N is Z minus P

where Z is the number of zeros of F of S within the contour that is used in this plane and P is the

number of poles of F of S within the contour that is used in the S plane then we went to the next

idea which is to say make this F of S one plus GC and we know the number of poles of GC and

number of poles of one plus GC are the same so we are looking at only these zeros of one plus

GC because it comes in the denominator.

So by making this  F  of  S one  plus  GC we came up with  the  result  saying the  number  of

clockwise encirclements around origin is Z minus P but now the S plane contour is something

that we take which from minus J infinity all the way up to J infinity and this long so this come

you know and compass all of RHP, so if we are able to show that this one plus GC has no zeros

in the RHP then we are able to show that the closed loop is stable.

So that is what the idea that we use and basically I said you do not have to worry about doing

these computation because these computations are done using a software you need to only learn

to interpret these computation and look at picture and be able to understand it the last idea we

said was whenever we are looking at encirclement for  F of S if it is one plus GC we look for

encirclements around zero if it is GC we look for encirclement around minus one zero, so this is

zero basically because we are talking about the complex number, so there has to be a real part

and imaginary part, so basically if you are looking for encirclements around here which is zero-

zero point for one plus GC because when we do GC we have to subtract one from everything.

So we have to look for in encirclement around minus one zero when we look at GC, so that

basically finishes this whole idea of NYQUIST stability and how NYQUIST stability can be

used for understanding the stability of time relay systems so with this we finish the portion on

designing controller understanding controllers and analyzing the stability of controller for time

delay systems in the next lecture I will talk about the next difficult dynamics which is actually

when  the process is open loop unstable, how do we design controller, how do we design robust

controllers using direct synthesis approach I will see in the next class, thank you.


