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We will  continue our 13th lecture  in this  course.  Till  now we have looked at  some basic

terminology in control, talked about how you model a physical system. So when we model a

physical  system,  we  talked  about  writing  conservation  equations  and  constitute  of

relationships. The conservation equations can be written for mass, energy, momentum and so

on. Till now we have focused largely on mass conservation equations. We will also have the

other types of conservation equations and how you model such systems in some assignments

that you work with.

So we saw that  a  physical  system can be  modeled  using  in  general  ordinary  differential

equations for this course but just keep in mind that there are other types of model equations

that come out when you do this exercise.  You could get what I call differential  algebraic

equation  systems  where  not  only  they  have  ordinary  differential  equations  but  you  also

algebraic equations as part of the model. If you are looking at modeling in little bit more

detail  or if  you want to capture both the time variation and spatial  variation,  then model

equations can become partial differential equations.

So as an example if you take this room and then say I want to control the temperature in this

room, then the immediate automatic question is where would you control this temperature,

because temperature at different parts of the room might be slightly different, let you say for

example.  So  if  you  said,  I  am  going  to  represent  the  temperature  of  this  room  by  a

temperature at a particular point and then simply do the model equations and write equations

around it,  you could call  it  a (())(02:03) parameter  model and you might get an ordinary

differential equation.

So the  temperature  at  that  point  as  a  function  of  time  is  what  you are  trying  to  model.

However if you were to say that this temperature varies across this room and at different

points I have different temperatures, then the temperature equation has to be represented in a

partial differential equation so that you get both the variation of the temperature with respect

to space and variation of temperature with respect to time. So it would mean is there is a



temperature at this point and I can see how it varies with time. Or at the same time I could

have three temperatures and I can see how they vary at different positions at the same time.

So  those  are  partial  differential  equations  and  there  is  lot  of  work  on  control  of  partial

differential equations and so on, so those are advanced topics that we are going to talk, not

going  to  talk  about  in  this  course  yet.  So  we are  going to  stick  to  ordinary  differential

equations. In ordinary differential equations I talked about this terminology of disturbance

variables,  manipulated  variables  and  control  variables.  I  said  control  variables  are  the

variables  that  you  want  to  take,  want  them to  take  certain  values.  And  you  are  free  to

manipulate  the  manipulated  variables  to  any  value  so  that  the  control  variables  take  the

desired values.

When you are doing all of this, the disturbance variables are the ones which have no control

over and they affect the control variable because of which you have to further manipulate the

manipulated variables to reduce the effect of this disturbance.  And we said there are two

types of control, one is called server control. This is the type of control where we voluntarily

change the set point and the want the output to follow the set point.

The other type of control is called disturbance rejection or regulatory control where we do not

want to say change the set point. We want the output to be at the set point. However the

disturbances perturb the output from set point and we then use the manipulated variable again

to control the output variable. So these are concepts that we saw and I also showed how in the

model we could have variables which are in some cases disturbance variables but if you put

in a control in that line for example, they could become a manipulated variable and so on.

So it is important to understand the physical organization or the physical structure of the

system that you are looking at and then tag variables as disturbance or manipulated or control

variables correspondingly. So there is no fixed rules. Here it really depends on the design that

you have but once you have a particular design, then you will be able to identify what are the

disturbances variables and what are the manipulated variables. Then we saw that when we

write these equations, in many cases in engineering systems these equations will tend to be

non-linear.

However, all of this analysis as far as this course is concerned is all for linear system so either

when we model the system, we model it in such a way that we get linear equations or we

model the system much more accurately and then get a non-linear model and we linearize



that non-linear model to get ultimate linear model. So either way what we end up with is

linear model. So when we have these linear models, then the notion of linear super position

works.

So if I have an equation, there will be an effect of the manipulated variable and then there

will be an effect of a disturbances variable and there will be an effect of what we call as state

variable. And all of these will be additive. So that is the idea of linear equation. So the upshot

of all of this is that when you model the systems, if you model the effect of the manipulated

variable and the disturbance variables on the output, then you would see there will be term

which is for manipulated variable and then there will be an addition to that which will be the

effect of disturbance variables. So these are additive.

Then we said you could solve these differential equations. However if you want to simplify

your life  a little  bit,  you could do what we called as Laplace transform and use Laplace

transforms  to  convert  the  differential  equations  into  algebraic  equations.  And  we  went

through series of lectures on how this is achieved. And what happens ultimately then is that

the differential equations when you solve, you get a solution in an integral form which is

what I showed you which is called the convolution integral.

When  you  convert  the  systems  into  Laplace  domain,  this  convolution  integral  simply

becomes multiplication. So Y of T in time domain will be convolution integral between what

we called as an impulse function and the input which will in Laplace domain become Y of S

is the transfer function model for G of S times U of S. So I said that what we really do is we

take U of T, convert it to U of S and multiply that with G of S to get Y of S and we inverse

Laplace transform Y of S to get Y of T.

So this way what we do is we basically work with algebraic manipulations instead of solving

differential  equations.  That is the advantage of Laplace transforms. As you get more and

more familiar with this topic and understand this more, there are much better uses of Laplace

transform in terms of interpretation and insights where you could think the whole control in a

more frequency domain. And then you will be able to make judgments about controllers and

processes,  much  more,  sometimes  even  more  intuitively  in  frequency  domain  than  time

domain.

So that is something that you will get good at. Nonetheless as far as this part of this course is

concerned we only focused just  doing this  computations and getting Y of T and we will



expand on that in this lecture through this controller equations and so on. The key thing to

notice here is that if you had to actually do this Laplace transform through integration and

inverse Laplace transform through some complicated again integration, this whole approach

will be rather pointless. But that does not happen. And what happens is that lots of these have

been pre-computed and you have a table of time functions and their corresponding Laplace

transforms.

And when you go from U of T to U of S, you look at the time function for U of T and then

pick a corresponding U of S. And then once you get Y of S, G of S times U of S, then you

look at the corresponding Y of S in the Laplace domain column and then go back to the time

domain. So that is the idea that allows us to do these computations rather efficiently. Then

what  we  saw  was  we  said  any  Laplace  transform is  basically  going  to  look  numerator

polynomial by denominator polynomial for the stress based model that we have been talking

about.

And then real question is how do I invert this, then I showed you the idea of partial fractions

and I showed you how you can do the inversion using simply one row in this Laplace table

most of the time. You can get this inversion, so we spent a couple of lectures spending time

on that. And from that idea then I introduced a notion of stability, I showed how using this

partial  fraction idea you can understand these concepts of stability and we came with the

result that a system is stable if all the poles of that transfer function are in the left top plane

and even if one pole is in the right top plane, the system is unstable.

We also addressed poles on the imaginary axis where when we talked about bounded input,

bounded output stability. I showed you that if you have poles on the imaginary axis, even if

you have bounded input you can get unbounded output. So you have to address the poles on

the imaginary axis carefully. And I also explained the notion of resonance through the poles

on the imaginary axis and so on. So as a summary we now know how to model systems, we

now know how to model the effect of the manipulated variable on the control variable, effect

of the disturbance variables on the control variable and so on.

So we are now ready to start talking about controllers and control equations. And what we are

going to do is we are going to look at controller and control equations in time and Laplace

domain  and  then  start  thinking  about  how would  I  analyze  these  processes  if  I  have  a

controller also in place. So that is what we are going to do.



(Refer Slide Time: 10:50)

We are going to look at results in the Laplace domain, so we will first look at this part. All the

summary that I did till now talks to this part, so what this picture says I have shown you this

before. What this picture says is the effect of the disturbance if I do d of S, comes into the

disturbance model and it affects Y of S. And I also have U of S which is a manipulated

variable which can affect Y of S. So if I for example, said this process is a transfer function

and there is a disturbances model transfer function, then Y of S can be written as the process

transfer function times U of S plus+ the disturbance transfer function d of S.

And this is the point that I have been making several times that the effect of the input and

output on, the effect of input and disturbance on the output is basically additive. So I have

this one here and this one here. So this is what we have talked about till  now. Now also

remember that we can get this Gp Gd from the physical system. So all the information about

the physical system is embedded in these transfer function these are not abstract quantities

but they comes from the physical system.

Now what we are going to do is we are going to do something called closing the loop. So let

me quickly explain this idea and then we will go into all its detail as we go through future

lectures. So basically what we are saying is in a time domain what we want to do is we want

to compare Y value with a set point value. So I also say set point as a function of T and just to

generalize it normally if I have Y like this as a function of time, set point might be a constant

value, so this might be the value of Y set point.



But in some cases you might actually say I want to start this process slowly and then take it to

this place, so this could also be the profile for Y set point. So you generalize this, I have made

this as Y set point which is a function of time. But in most cases Y set point will be a flat line

or a constant value. So essentially starting from the bike example that we talked about, every

time our interest is in comparing these two and once we compare these two, if they are the

same, then I have not job.

If they are not the same, then what I am going to do is I am going to go and manipulate, so

basically the difference between this is what is going to feed into how I should manipulate

this U of T. So this is the basic idea that we have been talking about. So if you think about a

block diagram for this, then basically since we have made Y of T into Y of S, then Y set point

should also be made into Laplace domain because we cannot mix and match Laplace and

time domain in the same picture.

So everything is in Laplace domain, so since we compare Y set point times minus- Y of S, Y

of T in time domain, using linearity of Laplace transform if you are comparing this, that is

equivalent to comparing Y set point of S minus- YS. So the Laplace variables, so that is what

is shown in this picture. So I compute this, so this is Y set point minus- Y. And this is what we

call as an error in Laplace domain which will be, so if you say this is e of t is this, if you take

Laplace transform of this whole equation, then the left hand side E of S equal to Y set point S

minus- Y of S.

So that is what we have here. So I have this E of S which is error and if this were zero, then

the error would be zero, similarly E of S will also be zero. And we take control actions only

when E of S is not zero. So this is where we introduce this notion of the controller. So what

the controller does, it gets information about the error and then it has to figure out what the

output  from  the  controller  should  be  which  is  the  instruction  for  the  change  in  the

manipulated variable.  So in the process if  you think about the way it  works, if  I  have a

manipulated variable because of changes in this, this Y of S changes. So that is the process,

that is when I manipulate something, how does my output change is what the process called

as.

The controller is in some sense an inverse of this where the input to this controller is the error

which is the difference between Y set point and Y and the controller has to figure out how this

U should change. So how should I manipulate is what the controller figures out. And when I

manipulate U of S, what will happen to Y of S is what the process figures out. Now if you



combine both of these, then I have what is called the feedback loop. So the feedback loop is I

make some change to manipulated variable, I see the effect of that on Y output through the

process, then I compare it with my set point and that error is what I am giving as information

back to the controller to say okay, whatever manipulations you did either worked in which

case the error is zero, the controller says do not do anything more or did not work in which

case the error is still not zero, so the controller you have to further manipulate it.

And I am going to give you instructions on how to manipulate it, so that is the concept here.

So that is the feedback, so that is the reason why we call this as feedback control. So it is very

simple concept, you do something for some desired effect and you see whether the effect is

actually the same as the desired effect. If it is the same, whatever you have done is great. If it

is not the same, then you have to change your strategy and do something else.

And the changing the strategy how you change it and so on is what the controller gives and

real human action that is the brain, it looks at it, it sees this and then says okay, change it this

way. So that is the basic idea of feedback control. And notice how we have put all of these in

Laplace domain. Now the biggest advantage of this block diagram is everything is algebraic.

So you will see how we redo this.

(Refer Slide Time: 17:01)

So in time domain, basically I am having differential equation which when the solution is an

integral solution you get and which is a convolution integral. In time domain, this simply

becomes multiplication G of S times U of S. So when you have these blocks that I had before,



so you can simply, the block uses only multiplication and addition. So what you will have is

you will have a series of algebraic equations and we will see this in the next lecture.

And once you have the series of algebraic equations, basically you collect terms to one side

and solve for it  or use Gaussian elimination kind of things to solve for it  and so on. So

ultimately all the variables have become part of these algebraic equations and you can quite

easily solve for them.

(Refer Slide Time: 17:55)

So now let us look at different types of controller that we will have. So first is what is called a

proportional controller, we will come back to all of this in more detail. In this first lecture I

am going to quickly introduce this idea so you get a feel for how these things work. So a

typical U of T in time domain for example will be the way we have written is usually U of S

plus+ this and if you do this in deviation variable form, so we are going to write U of t or U

prime of t as U of t minus- U of S and we are going to say no point writing this prime every

time.

So I am going to call  this  itself  as U of t  with the idea that at  steady state it  is 0. So a

proportional controller is going to set the value of U of t and remember this is in the deviation

variable.  So once you compute this,  the actual  manipulated  variable  value this  plus+ the

steady state value. So the proportional controller is a simplest controller. What it says is if I

see  a  mismatch,  I  will  take  an  action  proportional  to  the  mismatch.  So if  I  want  to  do

something, and I do something, and I see the result is slightly different from the desired

value, so the error is small, so the next time I want to take an effort to correct this error.



I will take a small effort. Now if the error is very large, I will take a large effort. So that idea

mathematically is very very simply written as U of t is K c. So this is what is called the

proportional controller. So this operates on very very simple principle saying my new effort is

going to  be basically  directly  proportional  to  how much error  whereas  how much is  the

distance between what I desired and what I actually got. So that is this, so if you do this in the

Laplace domain, it is very simple, U of S is K c times E of S.

So if you think about this controller, then the controller is simply K c, just one parameter and

nothing else. So if you think about this in the Laplace domain block diagram, this controller

is simply K c. So if you give me E of S is simply K c times E of S. Now a slightly more

sophisticated way of thinking about this would be to say look, I want to take a control action

not just based on the current error that I had but I have seen errors before. So that information

is useful.

So what I am going to do is I am going to integrate all the errors that I have seen till now and

then  I  am  going  to  write  my  controller  or  the  input,  manipulated  variable  as  not  only

proportional to the error that I see currently but also I am going to account for all the past

errors that I have seen and then consolidate it with an integrated error and then I am going to

take an action both on based on the current error and the integrated error that I have seen.

So it is like whatever past actions that you have taken, they are all accumulated to some error,

so you are going to take that also into account. So a form in which this is written is K c times

e of t which is the action based on the current error. And K c by tau i. This is to make this in

standard form, we could have also called it as K c 1. But this is standard form. K c by tau i, 0

to t, e theta, the theta and this is the theta because I want the running variable to be different

from the time variable. So this is proportional integral controller.

In this case if you take the Laplace transform, you will have U of S is K c E of S and we

know this from before. If you do this integration, the Laplace transform of this will be E of S

by S. So I have K c, E of S by tau i S. Now if you simplify this and so on, you will get this

form which is K c into 1 plus+ 1 by tau i S, E of S. So if you think about the controller itself,

because E of  S is  some multiplication  times  E of S,  so the controller  is  defined by this

multiplying factor which is K c times 1 plus+ 1 over tau i S. So that is called the proportional

integral controller.



(Refer Slide Time: 22:13)

The third type of controller we are going to see in this course is what is called proportional

integral derivative control. So here the idea is I am going to take a control action or I am

going to set my manipulated variable based on first the current error, based on integrated

error and also based on the rate at which the error is changing. So if let us say, so this is kind

of a zero line and supposing I am here which is error or near zero, how fast I am dropping

also matters. So this is the rate at which this is dropping.

So I  am going to  make this  proportional  to  the rate  at  which this  error  is  increasing  or

decreasing. So that is given by de by dt and I used K c over tau i here, K c tau d. This is again

the standard form, so you could have called this K c 1, K c 2, K c 3. But this is the standard

form in which we are going to look at this whole course material. So the very first controller

just looks at the current situation, the second type of controller is slightly more sophisticated,

it looks at the current situation, and all the previous errors that have been seen.

The third type of controller looks at the current error, all the errors that were seen and what is

the rate. So future, how the error is likely to change. So this takes into account current, past

and future. Proportional integral takes into account only current and past and proportional

controller just takes into account current. So that is how you want to think about this. Now if

you do the Laplace transform of this, the first term is K c S, the second term we did in the last

slide. This also you know, if you assume the error is initially zero and then this is K c tau dS

E S which is also something we have seen.



And if you simplify this, you will get this equation. And again since I have U of S, is some

controller function times E of S, the controller function is the following here. So K c times 1

plus+ 1 over tau i S plus+ tau d S.

(Refer Slide Time: 24:20)

So in summary the P controller is simply K c, P I K c into 1 by 1 plus+ tau I S. And PID is K

c into 1 plus+ 1 over tau I S plus+ tau D S. So this has one parameter K c, this controller has

two parameters K c tau I and this controller has three parameters K c tau I and tau D. So

when we talk about choosing a control  structure,  we talk about whether we are going to

choose a P, PI or PID controller. That is what we talk about when we talk about a controller

structure. And when we talk about tuning, then we talk about what values do we keep for K c.

Supposing I say I am going to choose a control structure P I, then that means the controller

form is this and later when I say I am going to tune this PI controller, basically I am going to

find values for K c and tau I. Similarly if I said I am going to choose a control structure as

PID, then this is the controller equation. And when I say I am going to tune this controller, I

am going to choose values for K c tau I and tau D. So that is what controller structure and

tuning means.

Now what are the advantages and disadvantages of each type of these controllers? Nothing is

perfect, so in some cases you just want to use a P controller, some cases you want to use PI,

some cases you want to use PID and so on. Because this is more sophisticated, does not mean

this is always the best controller. So there are trade-offs for each of these. There is a reason

why we move from P to PI. And there is a reason why we move from PI to PID.



But  because  of  certain  reason we move from here  to  here  but  that  will  introduce  some

disadvantages for this controller also. So it is not always that PI is better than P. Similarly

when we move from here to here, we get certain advantages and certain disadvantages. So

starting from now, we are going to look at these and then how we are going to tune this, why

do we go from P, PI, PID and what are the advantages and disadvantages and so on, are

things that we are going to see.

Before we do that, what we are going to do is because we have looked at how to analyse this

transfer functions, and we never analyse transfer functions with a controller in place, I am

going to show you that whatever you have leant till now is enough for us to analyse transfer

functions even with a controller in place. So without actually going into this tuning and so on,

first I am going to assume that I have some controller transfer function and I am going to

integrate that into my block diagram and show you how you can do analysis of these so

called  feedback control  systems also in  the same manner  in which we analyse the other

systems till now.

So that will be the first part, then we will come to P, PI, PID. Then we go to tuning ideas and

that basically will cover what most universities teach us basic undergraduate control plus, so I

will come back, pick up from here in the next lecture. Thank you.


