
Rheology of Complex Materials
Prof. Abhijit P Deshpande

Department of Chemical Engineering
Indian Institute of Technology, Madras

Lecture - 08
Stress and Strain rate

So far when we discussed in the previous lecture what is meant by a contact force and we

saw that stress tensor is a specific example of contact force. And we know that stress

tensor can be specified by specifying the 9 components. And since due to balance of

angular momentum stress tensor is symmetric we effectively have six components of

stress sensor  which are involved in  any flow situation in  which complex material  is

involved.

So, what we can do next is let us look at how are these stress components specifically,

when we have a cone in plate kind of a device which we will see later on is used for

measuring the viscosity of the fluid.
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So, cone in plate as we will see later on will be a device in which case; we will have a

cone which is rotated at a given controlled speed it could be also oscillated and then we

have a plate. So, we have a cone and we have a plate and the fluid of interest is actually

taken in the gap. So, this is where we take the fluid of interest which could be let us say

ink, it  could be paint,  it  could be polymer melt,  it  could be a paste,  whatever is the



material that is of interest and the idea of cone in plate device is to achieve deformation

in a controlled manner by controlling the motion of motion of cone and then we have a

sensors which can measure the forces which are generated in the material; so sensor to

measure the state of stress in the material.

So, let us look at this state of overall geometry it looks like that clearly we can define this

as a radial direction just to see from the top what we will have is view of this where this

is the cone which is rotating and then this is the outer diameter of the cone. So, this is the

cone diameter will be specified and so this cone is of course, rotating.  So, the radial

direction  is  one  important  direction  and  to  describe  this  problem  we  use  spherical

coordinate.  So,  if  we see this  description  of this  problem and if  we try to  draw the

spherical coordinate system generally what we do is we say that we measure theta from

the vertical axis and then phi is measured in terms of the plane itself and then of course,

we have the radial directions? So, how do we map the spherical coordinate into the cone

inflate.

So, we can take this point as the center of our coordinate system. So, what do we have in

this case is therefore, velocity is in phi direction because this cone is rotating we can see

that the rotation direction is in the plane. So, velocity is in phi direction if you look at the

cone everywhere and we have the fluid in it since this top surface is moving what we

have is velocity here high while here the velocity is 0. So, that is how there is a velocity

gradient set in or there is a strain rate in the material as we will define in the next lecture,

but because of this the stresses general get generated in the material.

So, velocity in the phi direction; direction of shear as we will define later on also is in

theta direction as you go from this point to this point. So, we have this vertical line which

is similar to this from here we measure the angle theta. So, this is theta measures the top

surface as well as theta measures this bottom surface. And of course, this bottom surface

is theta equal to pi by 2 and so the direction of shear is theta direction of velocity is phi

and of course, the radial direction itself as we go out from the center outward we have

the radial direction.

So, now, the question is how in this kind of a scenario where we have the all the r theta z

components how do we describe the state of the stress.
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So,  we  can  draw  this  in  terms  of  a  small  volumetric  element  and  because  of  our

coordinate system now we are describing all of these. So, this is basically a radial plane

this is an r plane, this will be a five plane and this will be a theta plane similarly this is

the r direction. This is the phi direction and this is the theta direction.

So, now we have defined the 3 directions are theta phi and we have defined the 3 planes.

So, basically we have now 9 combinations. So, the question that you can ask yourself

and see is where will sigma rr be for example. So, sigma rr as we said is there is one of

them indicating force one of them indicating direction.
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So, just to go back and see the first index indicates the direction of surface normal. So,

which means this is the surface r surface or r plane and this is indicating the direction of

force of the contact force and so clearly this is an example of sigma rr. Now you can also

again think and try to justify as to what is being drawn here. So, what I have drawn here

is what I have drawn here is basically of a stress which is on theta plane and it is in r

direction.

So, clearly based on the convention that we have written now this is nothing, but sigma

theta r, because the second index describes the direction the first index describes the

surface. Therefore, in a cone and plate we can see that all 9 components of stresses will

be active.
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So, coming back and summarizing given that in a spherical coordinate system which will

be used for cone in plate system where velocity is in the phi direction and the direction of

the shear will be theta direction we will see that there are 9 components of stress tensor

that can be specified. And of course, to find stress at any given point what we need to do

is to multiply the stress tensor a lot with the no unit normal vector. And since now we are

describing the unit normal using a spherical coordinate we have 3 components of it n r

which is in the r direction n theta which is in the theta direction n phi which is in the phi

direction.

So, using this operation we will be able to find the stress which is at a point on a surface

given by n and as a preliminary observation we will  see that cone in plate device is

where shear flow is observed. So, since theta phi are the dominant components one of

them being velocity direction the other one being direction of the shear we will see that

sigma theta phi or sigma phi theta will be the 2 dominant components which will be

discussed.

In fact, we will see that the presence or absence of normal stresses as we saw in the

unusual flow phenomena lecture and where we also discussed rod climbing and other

such effects which were related to the normal stresses what we will see is in fluids we

will try to impose sigma theta phi or sigma phi theta using a cone in plate geometry and

if we measure sigma rr and sigma theta theta, we will get a very good indication of the



elasticity of the material or what are the what is the basic viscoelastic behavior of the

material  can be characterized; if we subject the material  to sigma theta phi and then

measure what are the normal stresses which are generated.

(Refer Slide Time: 11:09)

So, with this basically we can summarize now that pressure and stress are both examples

of contact forces we need to specify a surface before we can specify the contact forces

and we evaluate them for the balance equation once we specify the surface pressure is

again isotropic they include dag they are diagonal terms and they are all equal they are

all of the same value stress on the other hand is a depending on flow conditions all six

components can be non-zero. So, depending on what type of condition clearly if there is

no flow then only diagonal components are there which are all the same and that we call

pressure. So, even in a stagnant liquid case, we will have hydro static pressure which will

be the contact force when we have shear flow we will have the non diagonal elements to

be non-zero.

We will see that shear a flow certainly non diagonal elements will be at least one of the

non diagonal element will be non-zero, but we might also have normal stresses to be

non-zero  in  case  of  extensional  flow  we  will  have  one  or  more  of  the  diagonal

component will definitely be non-zero. So, the key word here that you should focus on is

definitely. So,  at  this  stage by just  saying shear  flow or  extensional  flow we cannot



completely specify the state of stress tensor we can only say that shear flow at least one

or maybe 2 components of non-diagonal elements will be non-zero.

We will see most of the time with simple shear flows that we will discuss in this course

one component of non diagonal component will be non-zero, but if we have elasticity

and normal stress differences then we will also have normal stresses being non-zero for a

Newtonian fluid in  simple shear  flow we have only one component  of non diagonal

stress in case of extensional flow.

Similarly we will at least have off the diagonal elements non-zero, but we may have

other components depending on the type of the fluid, but in general for a very normal for

a complicated flow which is involved in engineering situations we will have almost all of

the  component  non-zero.  And  therefore,  to  say  that  we  understand  the  fluid  flow

behavior of a material we need to not only understand it under shear flow we have to also

under I understand it under extensional flow. So, that the general flow where everything

is  non-zero  can  be  understood  based  on  our  understanding  arrived  at  in  shear  an

extensional flow.

So,  sometimes  we  will  say  that  the  general  flow  is  a  combination  of  shear  and

extensional flow because in lab situations to understand rheology we first subject the

material to maybe extensional flow and then subject it to shear flow. And then try to

arrive at an understanding then we say that general flow is a combination of those can we

combine this understanding and then try to explain the behavior in a most general case.

So, with this we come to a close in terms of what is the overall stress tensor.
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In terms of using it further for rheological analysis we will split it into 2 parts isotropic

which we have already seen is pressure and this will be even non-zero even if there is no

flow. And we will define another stress called deviatoric stress which will be non-zero

only if material deforms and flows. So, the overall stress which is called the total stress is

equal to the pressure in the material and the deviatoric stress. So, this is the deviatoric

stress and this is pressure.

So, we of course, we can use the matrix notation to write it like this or vector or tensor

notation and component wise we know that sigma 1 1 is minus p plus tau 1 1 and so on.

So, each of the stress of the total component can be found out if we know the deviatoric

stress and pressure together.
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So, now in the next part of the lecture we will look at deformation. So, in general before

we start and define the quantities which are which quantify deformation? Let us just ask

this question is what do we mean by deformation in a solid and more importantly how do

we apply deformation in a solid.

So, generally for example, when we learn strength of materials or when we look at solid

mechanics  what  we  have  is  a  solid  body  which  can  be  applied  different  types  of

deformations.

(Refer Slide Time: 15:58)



For example, we can take a block of material and we can stretch it. So, this is called a

uniaxial tension or we can also take a block of solid and we can try to shear it by keeping

this end fixed. So, this is called shear we can also of course, if we have and this is more

understood in terms of a rod that we can twist it or torsion. So, these are all different

ways in which we apply forces on the material and then material deforms.

If we look at what we would expect as a general deformation in the material we could

draw that as a result of extension the material may become like this. So, this is deformed

solid. Similarly in this case, the deform solid would be sheared solid and similar in this

case also the material will get twisted. And if I were to look at it from this site, let us just

look at it from this side and draw the cider circle and if I draw a line like this when we

twist the material in this direction basically what we will have is the line would have

shifted.

So,  that  is  the  twist  that  is  been  imposed  on the  material.  So,  this  is  generally  the

deformation that we apply on a solid and we see its response in terms of how much it has

deform of course, sometimes we apply a fixed deformation and then measure the amount

of force needed for that deformation some other time we apply a force or a stress and

then we see how much deformation is there in the solid now similarly how do we apply

deformation to a fluid. So, there are 2 broad classes of inducing deformation in the fluid

and both of these are useful as far as rheological techniques are concerned one is called

the coquette; coquette flow and coquette flow is basically similar to.

So, in this case solids surfaces are used to make the fluid flow to make the fluid flow.

And so, it is very simple to see that a simple shear flow of a fluid can be done by taking

the fluid between 2 parallel plates; so if I take 2 parallel plates and if I take fluid between

them. So, I take fluid between 2 parallel plates and then what I do is I make the top plate

move with certain velocity or I apply some force. So, that it moves; I will have the fluid

also shearing and so based on this motion this is called coquette flow.

We similarly also have we also have Poiseuille flow in which case we have fluid being

pushed because of a pressure gradient. So, we usually use a pump. So, that pressure at

one point is higher than pressure. So, that P 1 is greater than P 2 and we take a fluid in

this pipe then the pipe starts moving and so this is an example of Poiseuille flow. So,

both of these cases the fluid is getting deformed and the other example that we saw when



we were discussing the unusual flow phenomena was also the fact that I can take the

fluid between 2 plates and I can move if they I move the top plate with a certain velocity,

then again I will have extension of the fluid element. Therefore, similar to solids we can

also actually achieve deformation in the fluids.

So, now let us look at 2 specific example one of them is related to rod twisting that I

discussed the other one is related to fluid shearing. So, let us look at one example where

we take a coordinate system.
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And we have 2 plates and then we take fluid in between this and then since the top plate

is moving we will have the fluid also move. So, this is an example of shearing fluid we

can see that how this kind of a situation would be relevant in let us say a cold cream or a

shampoo  in  case  of  shampoo  we will  rub  it.  So,  basically  we are  sharing  the  fluid

between the surfaces in case of cold cream we are applying.

So, in general if we are designing these material systems in lab situations it is helpful to

subject them to shear conditions and therefore, it is useful to do such flows and this is the

most prototypical flows there that we will subject the material to and the other example

that we can look at is when let us say we take a material in between let us say a rod. And

so, we take the fluid and we have basically rod in the center of the beaker and now what

we do is we rotate this beaker.



So, because the beaker rotates now what we will have is rotational motion of the fluid

element  fluids  fluid  itself.  So,  everywhere  the  fluid  will  also  rotate  velocity  will  be

highest here and in this point velocity will  be 0. So, this is very analogous situation

because here velocity is high and here velocity is 0. So, in both of these situations what

we can see is there is a direction of the velocity and then there is a direction of shear. So,

in this case for example, what we have is x is the direction of velocity, but if I go in y

direction, then the velocity changes.

Therefore, that will be referred to as direction of shear similarly in this case theta is the

direction of velocity and r which is this direction outward is the direction of shear and.

So, in terms of stresses that we had discussed earlier you would expect that in this case

given that velocity and shear are involved in x and y direction. And in this case direction

of velocity and shear are involved in theta and r direction we would have sigma yx or

sigma yx as the stresses and in this case sigma theta r or sigma r theta as the stresses.

So, we just keep this in mind when we discuss many of these rheological techniques later

on. So, having seen the different types of deformation that a fluid can be subjected to and

the fact  that we can look at  various prototypical  flows which are at  either involving

coquette devices or Poiseuille devices in each of them we will have certain directions of

velocity, but the velocity will change in other directions which we called the direction of

the shear in case of shear flows.

And so we will have to understand variations of velocity and various solutions of shear if

we hope to understand the material behavior quantitatively and to that effect we need to

define; what is the strain rate in the material.



(Refer Slide Time: 26:05)

So, just to summarize what we saw was in case of twist the displacement of a material

particle was in theta direction the velocity itself was in theta direction in case of a simple

shear  the  flow was  in  x  direction  or  the  displacement  of  material  particle  was in  x

direction. So, if you look at relative displacement between material particles no relative

displacement for 2 material particles plays that same r; for example, if I take 2 points

which are little bit away from each other, but they are at the same r. So, points at same r

have same velocity, so therefore, no relative displacement.

Similarly,  here  also  if  I  take  2  points  which  are  at  the  same y  there  is  no  relative

displacement at same y material points at same y no relative displacement. So, you can

see here we are trying to describe the kinematics of the material motion and we are using

several variables i; we are talking about displacement which is how much does a material

particle get displaced by we are talking about velocity which is how fast or slow the

material will points are getting displaced by and clearly what is more important in all of

these  cases  is  the  fact  that  what  is  the  relative  displacement  or  what  is  the  relative

velocity.

So,  in  both  these  cases;  what  is  important  is  to  have  comparison  of  velocity  and

displacement  between  different  material  points  and  so  this  importance  of  relative

displacement or motion of neighboring particles. So, we will see that this relative deform



displacement or motion is central to defining strain and strain rates in the material. So,

what we have in the next class.
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We will look at the velocity gradient and we will see that velocity gradient describes

rigid body translation rigid body rotation and deformation are the 3 phenomena which

have to be described for a material which is flowing. We will see that for rigid body

translation there is no velocity gradient because every material point is moving at the

same velocity for rigid body rotation. We will see that we will have non-zero velocity

gradient. And of course, the more important case where we are deforming the material

either in sheer extension or any combination of them, then we will have velocity gradient

being defined for those situations.

With that we come to a close for this lecture.  Next time we will define the velocity

gradient and the other quantities which are based on velocity gradient.


