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Lecture - 62
Microscopic models for rheology

So, in this segment of the course we are looking at Microscopic models for Rheology

and to begin with we are looking at some key statistical mechanics concepts. 

(Refer Slide Time: 00:21)

We already saw that how the microscopic system is made up of capital N particles.



(Refer Slide Time: 00:27)

And the  behavior  of  large  numbers  is  very  useful  tool  in  terms  of  getting  the  bulk

properties, in terms of the average behaviour. And so, the overall governing system for

this n particle system could be written in terms of a governing equation for each and

every particle.

(Refer Slide Time: 00:50)

And so, the Newton’s second law of motion states that mass into acceleration for each

and every particle  is related to sum of all forces. And so, the forces could be as we

discussed  in  the  previous  class,  the  drag  and  friction  with  the  surrounding  medium,



where  we  use  stokes  law,  we  could  also  have  the  surrounding  medium  act  on  the

particles as a Brownian force.

So, when we have a motion of a Brownian particle, a particle which is there in air which

is  randomly  moving  about  the  motion  is  due  to  the  air  molecules  impinging,  and

interacting with this particle on random and therefore, it acquires a path which appears to

be random to us. So, therefore, this is called the Brownian force and this is one of the

forces which could be acting on the particles of course, some of the particles could be

bonded to each other, when we are looking at polymer molecules for example, we have

several monomers, which are covalently bonded together and so, what we have is a set of

interactions between these particles which are bonded interactions.

(Refer Slide Time: 02:02)

So, whenever we have a system where we look at the isolated particles.



(Refer Slide Time: 02:10)

So, between the particles there are always interactions. So, if we now have a hypothesis

that we have the monomer, which is bonded to another monomer, and so this becomes

then a depiction of polymer and, this polymer could be interacting with the solvent so,

the interaction with the solvent could be in terms of drag as we said earlier, it could be in

terms of a Brownian force, we could also have the bonded interaction.

So, therefore, the bead the 2 and 3 will interact through bond, but let say if there is

another polymer which is in the and lets number those as 1 dash 2 dash 3 dash. So, then

the interaction between 2 dash and 3, so the molecule which is this molecule and this

particle and this particle, then it will be non bonded interaction. So, therefore, we have

both  bonded and non bonded interaction,  we have in  this  case polymer  solution  the

interaction between the particles and the surrounding medium, which could be a solvent

medium.

And so, generally the bonded and the non bonded interactions are described using an

interaction potential  phi and, then we would also have hydrodynamic interactions the

simplest hydrodynamic interaction that we have seen is drag or a friction, in which case

each particle surrounds with the is a interacting with the solvent and this of course, we

have seen generally in stokes law, where a fluid is flowing around a particle. And we

know that in this case the force is related to 6 pi eta mu a where a is the radius of the

particle, and so one can think of the overall coefficient here as describing the friction of



the  so,  we can  describe  this  drag  force.  So,  drag  force  or  the  friction  force  can  be

described as a friction coefficient  higher the friction coefficient  the more will  be the

force felt at higher velocity of course, also we have more force. So, this is one example

of  hydrodynamic  interaction,  where  the  particle  and  the  surrounding  medium  only

interacts, but we also have a situation where let us say in this case bead 1 moves or the

particle 1 moves.

Because, of this the solvents which are surrounding one will also move and because,

these  solvents  are  moving  they  will  also  interact  with  the  other  solvents  which  are

surrounding 3 prime. So, therefore, 1 and 3 prime will interact through what is called

hydrodynamic interactions and what we can see is some of the bonded interactions for

example, is a short range interaction because, only neighbour interact with each other

hydrodynamic  interaction  on  the  other  hand is  going  to  be  a  long range  interaction

because, particles which are not close to each other can also interact with each other

through hydrodynamic interaction.

So, therefore,  in general  for a polymeric or a colloidal system these are the types of

interactions which would be there, and so each and every microscopic system we will

have to specify, which of the microscopic mechanisms and which are the interactions

present. And then we will be able to write such a governing equation for all the capital n

particles and of course, the one way to solve the problem is to just solve these differential

equations.

And once we get the solutions for example, we get the solution for where at 1 instant of

time where all particles are, or we get the solution for the position of the particle, then by

averaging out we can know what exactly is the configuration of the overall system, or

what is the physical arrangement of the particles in the overall system. So, this is usually

done in simulations, where we take these simultaneous governing equations and solve

them numerically and simulate the overall particle system. 

For our course purposes for Rheology we will attempt, the other approach where we try

to take the governing equations and, use the idea of distribution function and to use

definitions  of averaging and statistical  averages to try to arrive at  a set  of governing

equations, which are valid for the bulk scale, but they are derived from microscopic scale

and, then average to obtain the properties at the bulk scale.



One example of this we have encountered from our school time onwards which is called

kinetic theory of gases. In kinetic theory of gases also we have again a capital n particle

system and at the microscopic scale each every molecule or particle is supposed to be

randomly moving about. And when we do kinetic theory of gases we obtain the overall

average response at the bulk scale for example, we know that the internal energy of an

ideal gas is related to the overall kinetic energy of individual particles and, when we

obtain the mean square velocity, we can obtain the internal energy.

So, internal energy which is a bulk variable can be obtained based on the definitions of

microscopic velocities. So, similarly we will need to do kinetic theory for many of the

microscopic systems that are of relevance to rheology. So, an example of that we will see

in terms of polymer kinetic theory to obtain the relation between stress and strain and

strain rate for a polymer solution system.

(Refer Slide Time: 09:39)

So,  in  order  to  think  about  the  overall  kinetic  theory, we  will  look  at  some of  the

simplifications that can be possible. So, if we look at a system n particle system where

the inertial terms are negligible, then the overall statement is related to basically all the

forces will sum to 0, what we mean when we say that the inertial terms are negligible it

implies that the velocities of the particles are not changing, or the overall distribution of

velocities is given when let say there were no forces also of interaction. So, whatever

was  the  equilibrium  case,  even  if  we  make  the  material  flow  the  overall  velocity



distribution does not get affected and therefore, we will not solve problems related to

change in the velocity.

And therefore, we can ignore the inertial terms, we also have the scenario where some of

these forces will lead to strong dissipation and, as long as those dissipation forces are

significant we can ignore the inertial terms in these equations. The overall interaction

forces can be written in terms of an interaction potential.  And this is again similar to

what we know in terms of potential energy in gravitational case.

So, the gravitational force is related to the gradient of potential energy by gradient we

need, we mean how much does the potential change. So, 2 points which are of course,

potential energy is higher potential energy is lower. So, the change in potential energy

between these two points tells us that there will be a gravitational force in the direction

of the gradient of the potential energy.

And  so,  if  we  look  at  the  governing  equation  now, in  a  case  where  there  is  only

hydrodynamic force and let  us assume that  that  let  us is  given by the drag force or

friction and, we only have an interaction which is based on the phi i then the overall

governing equation will be the hydrodynamic interaction force and, then the forces of

interaction  and given that  we were  only  considering  friction  between the  particle  of

interest and the surrounding medium, we have the friction coefficient into the velocity as

we saw earlier and, the gradient of phi which describes the force of interactions.

So,  the  governing  equations  for  all  the  particles  is  simplified,  and  it  says  that

hydrodynamic force or drag is balanced by the overall interaction force.
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Now we can look at  much more simpler  case also,  let  us look at  a set  of Brownian

particles and what we have is a system in which the particles can move about randomly.

(Refer Slide Time: 12:34)

And since they are moving about randomly we could define a variable of the number of

particles per unit volume as its concentration. And generally the particle motion in such a

scenario will be due to 2 factors, if there is any interaction here that interaction will force

the particles to move, or because the concentration itself is high or low at some points

particles may move from high concentration to lower concentration. So, generally when



we talk of how these particles move, 1 reason could be is the fact that they are due to

some interaction in a force field and, then the force divided by the friction coefficient

which in case of stokes law is just 6 pi eta into a will define the overall velocity. So, the

particles move because, of the presence of interaction and interaction right, now we are

dealing with only a simple case.

So, we say that there is one type of interaction which is described by an interaction

potential phi and, the force associated with this interaction potential is F. And remember

that F is just gradient of phi since we are looking at a 1-dimensional case it is del phi by

del X. Now so, the overall mole flux which is due to the external field or the interactions,

or  and also due  to  diffusion  because  concentration  is  different,  then  there  will  be  a

diffusion flux based on the diffusivity.

So, the overall flux of particles will be the diffusion flux times, the current which is or

the flux which is set up due to the forces of interaction. And so we can rewrite in terms

of V phi in terms of the force of interaction and therefore, in terms of the potential of

interaction as follows and at equilibrium of course, what we will have is this overall the

flux will go to 0 based on that we can in fact, derive the relationship between the friction

coefficient and the so, at equilibrium and the friction coefficient.

So,  the  diffusivity  is  related  to  the  friction  coefficient  and  this  is  called  the  stokes

Einstein relation. So, diffusivity whenever there is a concentration difference diffusivity

because of diffusivity, there will  be a flux cost and again concentration will  become

uniform. And whenever there is a diffusion happening there is a friction being exchanged

between the moving particles and the surrounding medium.

So, basically both of these phenomena was, are related to each other and, this is also

called  the  fluctuation  dissipation  relation.  So,  the  diffusion  happens  because  of  the

overall fluctuations in the concentration field and, the opposing force is dissipation in

terms of the friction that is encountered, and these two are related to each other. So, using

this relation we can then substitute for D in terms of k T by the friction coefficient and

the overall flux therefore, is a diffusion flux times the flux due to interactions.

Now, the overall  mass balance given that the overall number of particles remains the

same, the statement is that if particles disappear from one particular position, they will

appear somewhere else. So, the rate of change of concentration at any given location, as



a function of time is related to what is the gradient in the current. So, this is a statement

of equation of continuity for the number of particles and, by substituting the overall flux

in this relation, we can obtain an equation for how does the concentration change as a

function of time and position in this case.

So,  we  have  in  this  case  a  partial  differential  equation,  we  are  looking  at  a  one

dimensional case we are looking at location in physical space. So therefore, X here is the

physical dimension c is the number of particles and phi is the interaction potential. So,

we can see that for this simple case of concentration of particles which are moving about

randomly, we can describe the evolution of concentration using this expression.

(Refer Slide Time: 17:47)

So, we can also make a probabilistic statement of the same mass balance the c which is

the concentration per unit volume of the particles, we could interpret that as probability

of  finding a  particle.  So,  we can  take  any volume element  in  the  overall  system of

interest and, we count the number of particles which are there, and that is nothing, but

concentration. So, so we could ask the question as to what is the probability of finding

particles in a given volume. So, the c also indicates the probability.

And so, this equation of continuity therefore, accounts for the probability changing as a

function  of  time.  And  position  and  the  statement  that  is  being  made  is  that  when

concentration when it reduces in one place it happens because, there is an overall flux

which is being set up. Similarly the probability distribution changes because, there is an



overall evolution in the system because, probability is changing from one location to the

other location. So, therefore we could think of the c which is a function of X and time in

this case X is the physical location and time.

So, it is the distribution function for describing the particles. So, we could interpret it as a

concentration which changes from position and time, we could think of it as a probability

distribution  function  which  describes  what  is  the  probability  of  finding a  particle  at

location X and location time and of course, when we do this for the overall system we

know that. So, if we do this from minus infinity to plus infinity which means the overall

system then this  is  a  constant  value because,  the overall  number of particles  do not

change and so, this is again very similar that if we have a probability distribution. .

And this we usually learn in our earlier statistics courses that if P x is the probability

density or probability distribution P x dx is the probability of observing between x and x

plus dx and, we know that when you do the overall probability from minus infinity to

plus infinity this is normalized. So, the overall probability of observing any value of x is

of course 1. And observing value of x between x and x plus dx is given by this P x dx.

So, similarly this concentration variable could also be interpreted as a dense distribution

function, and that is what we do for describing the state of the system in a phase space.

So, as we described earlier phase space is 6 n dimensional spaces.

So, we have position of each and every particle and velocity of each and every particle.

So, there are 6 n such variables because each of them is vector. So, N into 3 N into 3 so,

we have 6 n variables and so, we could describe the system behaviour by describing how

does this distribution function evolve, just the way here we describe the concentration of

the particles and the configuration of the overall system by looking at how c evolves as a

function of time.

So, in this case also how psi which is the distribution function evolves as a function of

time is related to the divergence which is like the spatial derivative here gradient, which

is again the spatial derivative here the m here is some measure of mobility zeta is the

friction factor. So, 1 over zeta is mobility. So, therefore, this is some measure of mobility

and again psi and c are again involved, so by analogy you can see that a governing

equation which was written to account for how does probability and the concentration of

particles change, a similar equation can be written for probability of observing a state of



the  overall  system,  given  that  the  state  of  the  overall  system depends  on  individual

particles and their states, the overall distribution function is a function of 6 N variables.

So,  the  evolution  that  happens of  psi  is  happens in  6 N dimensional  space  and this

evolution  equation  describe  this  gradient  and divergence  in  that  phase  space.  So,  of

course, this is much more complicated than a simple diffusion equation that we have

seen earlier  because,  here we deal  with three-dimensional  and physical  space  this  is

phase space. 

So, we will  only deal with a simpler case,  and so you know in the next few sets of

lectures, what we will see is how do we simplify using this equation the overall response

of  a  microscopic  system which  this  which  is  describing  a  polymer  system.  So,  the

polymer system will be described using a bead spring chain model and, so the basic idea

of beaks bead spring chain model is the following.

(Refer Slide Time: 23:40)

That we have the polymer being depicted using beads and the beads are connected to

each other through springs, and so we have beads several beads and so, N minus 1 and

N. So, we have beads and we have springs and, we will see that this bead spring chain a

chain which is found with beads and spring is a very effective model to describe. So, in

this case again the capital N particles that we are talking about are N beads. And so the

neigh  boring  beads  are  interacting  with  each  other  using  bonded  interactions,



neighbouring beads are interacting with bonded interactions.  And of course, there are

non bonded interactions also present; we will also have the solvent in the system.

So, therefore, there will be drag or friction and hydrodynamic interaction and the solvent

molecules would also be interacting with beads with a random Brownian force. So, now

the task for us will be to set up the overall governing equation for such a microscopic

model  and,  then  to  simplify  it  with  the  theoretical  tools  required  to  analyze  the

distribution function for such a system. 


