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Strain, convected rates and non-linear models

In  these  segments  of  lectures,  we are  looking  at  the  definitions  of  strain  and  some

examples  of  derivatives  which  are  useful  in  describing  the  non-linear  response  of

materials looking at non-linear rheology or the rheology at large deformations. And we

are also quickly going to review a couple of non-linear models. So, we have already

define the strain and we saw that how strain reduces to infinitesimal strain tensors for

small deformations, but for arbitrarily large deformations, the overall finite strain tensor

should be used.

When we use when we work with largely fluid like materials, quite often strain does not

appear in the overall governing equations, only when we look at the integral type models

then the strain  might  appear  in  the  overall  governing equations.  However, if  we are

working with solid like materials and if you recall we had discussed standard linear solid

model, where strain was involved in the overall governing equation. So, in such cases if

we are looking at the overall model for large deformations, we will have to replace the

small infinitesimal strain tensor, which is valid for small deformations with the finite

strain tensors that we defined.

So, therefore, generally in rheological discussion, the overall finite strain tensors may not

be  as  common as  they  are in  let  say discussion of  non-linear  response of  solid  like

materials. So, in this lecture continuing on we will define the convected rates and then

look  at  some  examples  of  non-linear  models  and  then  finish  up  with  the  overall

governing equation for Giesekus model as well as its response.
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So, let us look at the convected rates, as we had looked earlier the given that the overall

description of the material for deformation or for rheological analysis can be done using

convected base vectors and convected coordinates and so, when you evaluate the rates of

change of these quantities in the convected frame, they are related to the derivatives that

we otherwise know. So, for example, the upper convected derivative which is indicated

usually by this triangle which is inverted, I we should also remember that depending on

the source that is being used there are multiple notations which are possible and so one

should be careful in terms of looking at what is the derivative and look at the notation

and its relation to one another.

So, this is one of the commonly used notations, but not the only one. So, the overall

convected rate of stress is related to the rate of change of stress with time alone and then

this is like the convective term which is there in the navies stokes equation also or the

inertial term that we call. This is rate of change of tau with respect to the position itself

the gradient and this term arises as we have seen in acceleration also this is these 2 terms

put together are the material derivative. And then finally, some terms which are related to

the deformation in the material.

So, if the material is not deforming gradient of velocity would be 0 and therefore, in that

case we will not if we want to evaluate the rate of change of stress, we will not have any

contributions  due to these terms. So, these 2 terms put together  are the terms due to



convected rate and so to summarize again the overall convected rate is based on the rate

of change of stress with time, rate of change of stress with position and then contribution

to the convected rate based on the deformation that is that the material is accounting for.

And given that we had seen that there are two sets of base vectors that could be defined

in  convected  coordinates,  we  had  seen  that  we  could  define  either  the  covariant  or

contravariant base vectors therefore, we also have covariant or contravariant derivative.

If you recall we had also called these set of base vectors as one set was called tangent

base vector and the other one was reciprocal base vector.

So, therefore, we have 2 possibilities of defining convected rate also. Generally the upper

convected rate is far more common in case of rheological analysis, from a mathematical

point  of  view  there  is  no  way  to  choose  one  over  the  other  as  to  which  is  more

appropriate,  it  is  through  experience  and  through  our  working  with  models  and  its

description  and  comparison  with  whatever  are  the  results  for  specific  materials  we

choose  one  or  the  other. And  we have  found generally  that  of  the  upper  convected

models seem to give results which are more according to our experience in terms of

rheological response of real materials.

But lower convicted derivative can also be defined and again it has 3 similar terms rate

of change of stress with time alone rate of change of stress with due to spatial variations

and  then  the  contribution  to  the  convected  rate  of  stress  due  to  deformation  in  the

material it  is also possible to define other non-linear other derivatives which are also

frame  invariant  each  of  the  derivative  is  based  on  slightly  different  physical

interpretations.

So, these are what we have defined in this slide are convected.
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However we could also define for example, a co rotational derivative in fact, you can

also construct these derivatives by combinations of these derivatives. So, if I add these 2

or if I subtract these 2, I can get alternate set of derivatives. So, therefore, if we add the

two then we get what is called a co rotational derivative, because instead of the velocity

gradient what is involved here in the terms which are due to deformation of the material

are the spin tensor or the rotational and that is why it is called a co rotational derivative.

And so this derivative is also frame invariant and can be used.

So,  therefore,  what  we  have  is  the  wherever  in  linear  models,  we  had  the  partial

derivative that has to be replaced with one of these non-linear frame invariant derivatives

for us to get a model which can describe the non-linear rheological response of materials.

So, generally if we look at the types of models which are there to describe the non-linear

rheological response, we could think of these models in terms of what is the overall form

of the governing equations.
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So, generally there are 2 broad type; one is the rate type equations or the differential

models and then we have the integral models. The idea in rate type models is to say that

at each and every instance of time how are the rates of different quantities and quantities

themselves are related to each other. So, for example, Maxwell model that we have seen

where we just wrote it in terms of stress and stress rate related to strain rate at each and

every instance of time is an example of a rate type model. We also saw that the Maxwell

model can also be written in an integral form.

Any differential equation can all be transformed to an integral form and similarly in a

rate type model could also be transformed to integral models. A depending on the overall

development  of the model itself  sometimes based on the physical  arguments that are

being made while developing the model, we may end up getting integral model as the

beginning stage and so therefore, a corresponding differential form can also be found

from the integral form.

So, generally depending on the history of how the development of the model took place,

we have some of the models which are more commonly used in the rate type form and

some other models, which are used more in the integral type form. For example,  the

Maxwell model more often than not is used as a rate type model. So, upper convected

Maxwell model we will see is an example of a rate type model and its also an extension

of a linear viscoelastic model. So, linear visco elasticity we used Maxwell model quite



extensively if we replace the partial time derivative with upper convected derivative we

have the  extension  of  linear  viscoelastic  Maxwell  model  to  a  non-linear  viscoelastic

model called upper convected Maxwell model. Similarly we will also look at another

example of a rate type model  which is Giesekus model.  On the other hand we have

several integral models and one example is large network model, which happens to be an

integral  form of  the upper  convected  Maxwell  model,  but  in  originally  when it  was

derived it was derived as an integral form. One most commonly known integral form of

governing  equation  is  to  account  for  reputation  in  polymer  melts.  So,  given  that

macromolecules are entangled with each other in any description of rheological response

of  a  polymer  melt  requires  description  of  entanglement  and  repetition  of  the

macromolecules, to account for the reputation dough adverts developed a model which is

an integral form model.

And so, as I mentioned earlier quite often we may have a model, which has both integral

or rate type expressions some other times it  is not possible for us to transform them

based on the complexity of the equation. So, when we say form of equations is important

this is only for us to know the phenomenological basis for how the governing equations

were arrived at and also intuitively for a given rheological problem we may choose one

over the other depending on the application. The other thing that we could sort of look at

is in terms of how is the model motivated and how was it derived. So, if it was derived

based on continuum and phenomenological macroscopic arguments, then we will have

one  type  of  arguments  and  leading  to  the  overall  governing  equation.  The  same

governing  equation  could  also  be  reached  starting  from a  microscopic  or  molecular

picture.

So,  in  one  case  we  use  continuum  mechanics,  in  the  other  case  we  use  statistical

mechanics  or  molecular  theories  to  arrive  at  these  equations.  So,  quite  often  it  is

important for us to traverse back and forth between these 2 types of models or these 2

types of understanding to get the overall picture. It is important for us to look at the

continuum  scale  and  look  at  the  overall  macroscopic  behaviour,  because  for  many

engineering applications we need that.  However, at the same time since many of the

physical mechanisms are at the molecular and microscopic scales, it is important for us

to understand the material constitution as well as material response at the molecular or

microscopic scale.



So, generally we use both of these approaches to try to understand the overall rheological

response. In this course so, far we have focused mainly on the continuum and phenology

phenomenological description of rheology for advanced learners it is very important to

look at the microscopic and molecular response as well.
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So, now looking at the upper convected Maxwell model since we are quite familiar with

the overall Maxwell model which we have used several times in the course so far.

So, we have been the one dimensional version of it we have been always writing it like

this as this is let say valid for the simple shear case and so when we write the upper

convected model, what we are doing is this time derivative which is partial derivative has

to be replaced by convected rate. And so the just to remind ourselves the 3 dimetional

version of this model will be just where we replace the single component model with the

tensor and therefore, this is the overall 3 D version of Maxwell model.

But this is valid only for small deformations because the rate quantity which is being

used which is the partial derivative of stress is only valid when we have deformation

small. However, for a convected Maxwell model what we do is we replace the partial

time derivative with the convected rate and in this case this is upper convected Maxwell

upper  convected  derivative  of  tau  and  therefore,  this  becomes  the  upper  convected

Maxwell model. And so given that the upper convected derivative itself is algebraically

complex, the overall governing equation of the Maxwell model therefore, now becomes



algebraically more complex. If you look at it in the boldface notation its very similar to

the Maxwell model itself except that we are using the convected rate.

So, we could again in this  description physically  intuitively say that Maxwell  model

basically relates stress and stress rate to the overall strain rate tensor in the material. And

given that there are nine components we can write each and every component, and for

example, in this slide we have written the yx component which would be very important

for many of the simple shear type of deformations in the material.

And these two terms are of course, from the earlier Maxwell model itself,  this is the

inertial term which arise when we have material derivative being incorporated and you

can see that this is now variation of stress with respect to position. So, that is why we had

said earlier  that  this  is  variation  of stress  with time alone,  and this  term incorporate

variation of stress with position or spatial variation of the stresses and then the last term

which is the convected rate contribution due to deformation itself.

So,  if  any  of  the  velocity  gradient  terms  are  non  zero  then  only  this  term  would

contribute.  Of  course,  we  know  that  if  lambda  itself  is  0,  then  we  have  only  the

Newtonian fluid model and in that case the overall convected rate itself is not immaterial

and the stress is only related to the current value of the strain rate tensor in the material.

So,  therefore,  we  can  now use  this  overall  governing  equation  instead  of  using  the

Maxwell  model  that  we  have  done,  and  the  results  of  this  model  will  be  valid  for

arbitrarily large deformations.
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Now, going on we can look at the integral counterpart and we had seen earlier that the

Maxwell model could be written in integral form using a relaxation modulus. So, if you

recall  G  into  exponential  t  minus  t  prime  by  lambda  is  nothing,  but  the  relaxation

modulus and if we integrate this equation by parts, we can get the overall stress in terms

of strain.

So, we have one integral statement where we define it in terms of strain rate, the present

value  of  stress  depends  on  present  the  integral  of  strain  rate,  which  the  material  is

subjected over all the history. Similarly by integration by parts we could arrive at the

present value of stress as a function of past history of strain that the material has been

subjected to. And this gamma yx is only valid when deformations are small and so we

replace this infinitesimal strain tensor component in the 3 dimensional version with a

strain tensor. So, this is now the large network model which is integral form of the upper

convected Maxwell model and one can show that this form is equivalent to this form.
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So, this is the differential form of the model and this is the integral form of the model,

but we choose to call it at large network model, because the origin of its derivation our

integral  and large network model is a specific case of large rubber like liquid model

where instead of if you instead of the exponential relaxation modulus which is due to

Maxwell model, if you use any other form then we have what is called the large rubber

like liquid model.
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So, now going on we will finish up by looking at an example of a non-linear model,

Giesekus model  has  been very  useful  in  terms  of  non-linear  rheological  response  of

materials originally it was again derived for polymer solutions.

So, therefore, it can be used for a specific set of materials, we have discussed in course

worm like macular systems, supramolecular systems and polymer solution. So, many of

these systems Giesekus model is a good starting point. It is a good starting point for non-

linear logical response because it has all the reasonable response that is expected from a

non-linear rheological response of realistic  materials.  We have seen earlier  that if  we

look at this upper convected Maxwell model it shows in fact, no shear thinning or shear

thickening.

So,  viscosity  is  constant  in  steady  shear.  Similarly  we  saw  that  the  normal  stress

difference for upper convected Maxwell model was proportional to strain rate squared.

While we know that the proportionality is not at all related to gamma dot squared, but it

is far more complicated. So, therefore, upper convected Maxwell model shows certain

features of non-linear response of materials, but it is grossly inadequate. On the other

hand Giesekus model  seems to have a  reasonable set  of non-linear  responses,  which

many of the realistic materials also show. Originally it is derived it terms of polymer

solution. So, the overall hypothesis was that there is a stress contribution in terms of

solvent and there is a stress contribution in terms of polymer and both of these added

together give us the overall stress in the material.

So, now the question is to derive each of these and the contribution due to solvent is just

a  Newtonian  contribution  where  eta  therefore,  is  the  solvent  viscosity. The  polymer

contribution  which  includes  viscoelastic  response  is  basically  related  to  the  upper

convected Maxwell model. So, if we say for the time being ignore this term and say

alpha is equal to 0, then you can see that the polymer contribution here tau p plus lambda

1 times convected derivative of tau p is equal to 2 eta p D will be nothing, but the upper

convected the Maxwell model of tau p.

So,  basically  what  this  model  incorporates  are  the  mechanisms  of  stretching  and

orientation of the macromolecules. So, whenever a polymer solution is being deformed

the macromolecules can stretch and macromolecules can orient and therefore, we have

the  upper  convected  Maxwell  model  of  polymer  contribution  stress  arising.  Now



additionally we have the term which is due to what is called the non-linear term, where

alpha  is  the  most  important  non-linear  parameter.  In  fact,  it  is  called  the  non-linear

parameter  because  if  alpha  is  0,  then  the  overall  governing  equation  reduces  to  the

Oldroyd-B model this governing equation will reduce to upper convected model this is

already there. So, when you add the two we get what is called the Oldroyd-B model and

again Oldroyd- B model is only very qualitative descriptor of the overall  rheological

response it has many of the same limitations as the upper convected Maxwell model.

However, the Giesekus model response is realistic predominantly because of this non-

linear term.

And so, for nonzero values of alpha, we have the overall stress appearing as a non-linear

term effectively stress squared. So, this is like saying tau squared terms which are there.

And the  origin of  this  term was based on the  fact  that  when we have  stretching an

orientation of macromolecule, the drag that it experiences there is an isotropy in it. So, if

you remember we have been talking about Stokes law and drag for macromolecule what

macromolecule experiences and so between the solvent, solvent and the overall macro

molecule we have the drag and because of stretching and orientation.

So, if we have stretching and orientation basically the macro molecule ends up being a

much more anisotropic object and therefore, now the drag which is experienced by this

macro molecule will be have to be found out for an isotropic object and the term due to

alpha is due to this. So, alpha is called the non-linear mobility parameter or the non-

linear  parameter  itself.  Now when we substitute  the value of tau p and tau s  in this

equation  and  simplify,  we  get  a  algebraically  complicated  governing  equation  for

Giesekus model. And in terms of overall description of these terms in words we can see

that  stress and convected stress rate  in combination with the non-linear  stress square

term, and stress and strain rate multiplicative term is related to the strain rate, convected

rate of strain rate, and strain rate squared.

So, now this is evident enough for us to see that how Giesekus model is an example of

non-linear  model.  The  convicted  rate  of  course,  contains  non-linear  terms,  but  we

additionally we have non-linear terms which are involving stress squared, we they are

involving multiplication of strain rate with stress we also have convected rate of strain

rate itself and then we also have multiplication of strain rate with itself. So, you can see

that the parameters are eta s, lambda 1, alpha, eta p. So, these are 4 parameters of the



overall Giesekus model. Sometimes it is useful to rewrite some of these parameters in

terms of additional more parameters.  So, then we have eta,  which is eta s plus eta p

lambda 2, lambda 1 and a as the overall set of parameters using which we can use we can

describe the Giesekus model. Given that these models end up being algebraically very

complex,  sometimes  they  are  tedious  especially  to  an  uninitiated  or  if  you  are  not

familiar.

So, the best way to get familiar with these is to actually work with these models and see

their response. So, for example, in class we had seen earlier that if you want to see the

response of Maxwell  model  to let  us say stress relaxation then we say that  strain is

constant and therefore, we substitute that value in Maxwell model saying that gamma y x

is constant and therefore, gamma dot yx is 0. So, similarly what we will have to do in

each of the case for Giesekus model also, is to substitute the working condition. So, let

us say if it is steady shear then we will have to say that since it is simple steady shear

only d yx will be nonzero d xx and everything will be 0 and that substitution here we will

give us a governing equation for components of tau and then those have to be solved for

us to get the overall response of Giesekus model.
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So, this is the overall description of the Giesekus model in index notation and we can see

that it is fairly complicated. And so each and every term one has to carefully calculate if



we have to work with the Giesekus model in general and so we will finish up by looking

at the components of Giesekus model for simple shear.
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 So, here d yx is related to gamma dot yx as we have seen in the class earlier and so, the

overall  governing equation for Giesekus model we still  have 4 terms of stress tensor

which are nonzero, we have seen that for for any general viscoelastic material in simple

shear flow we can have 4 components the 3 normal stress and the shear stress nonzero

and therefore, we have governing equation for tau xx for tau yx tau yy and tau zz. So, it

is these 4 equations which have to be solved depending on what is the d yx that is being

imposed.

So, if it is a simple steady flow then d yx will be constant. if it is stress relaxation then d

yx will be 0. if it is creep then tau yx will be constant and we will have to solve for d yx

and also strain. So, therefore, these set of governing equations are for simple shear alone,

analogously we could find the governing equations for extensional flow or any other

flow for which Giesekus fluid or a material, which is described very well by Giesekus

model response can be derived by such equations.
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And looking at the overall response of some of these some of this example.

So,  looking  at  steady  shear  response,  we can  see  that  the  Giesekus  model  response

describes shear thinning there is a Newtonian Plateau in the beginning of the at low

strain rates and so therefore, this is quite useful for many of the polymeric system and as

the  strain  rate  increases,  the  overall  material  is  shown  to  exhibit  shear  thinning

behaviour. And alpha which is a non-linear parameter as we have seen that when it is 0, it

will  lead  to  in  fact,  no  shear  thinning  and  as  alpha  increases  more  and more  shear

thinning is shown by Giesekus model.

So, Giesekus model shows more and more shear thinning when alpha the non-linear

parameter is higher and higher. And the first normal stress difference also in terms of the

coefficient is a function of strain rate itself. Remember that for upper convicted model or

for Oldroyd model the stress first normal stress different coefficient is constant. So, only

when we have  alpha  non zero  we have  actually  first  normal  stress  difference  again

varying as a function of strain rate itself and again this is qualitatively observed for many

of the polymeric system.

So, the Giesekus model describes both shear thinning as well as variation of first normal

stress difference, qualitatively reasonably for many polymeric systems.
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If you look at stress growth in steady shear again we have a very reasonable response

from a Giesekus model. At very low strain rates we have the predominantly exponential

type increase of the stress growth viscosity and whenever we go to higher strain rates

then we have this stress overshoot and then reaching the steady state and if you look at

the steady state values themselves you can see the apparent shear thinning also because

for low strain rates the steady value which is reached is much higher and when you go to

higher and higher strain rate you reach lower and lower values of steady state viscosity.

So,  therefore,  Giesekus  model  is  very  useful  in  terms  of  describing  the  non-linear

response of various materials, and familiarity with it would involve working with the

governing equations, which we showed in terms of index notation and simplifying them

for a set of specific rheological characterization.

So, with this we have reviewed the overall non-linear models, which are useful for the

characterization of rheology of complex materials. However, we should remember that

these are very simplistic models that we have discussed even though they happen to be

very complex algebraically; there are far more complicated models which are useful in

today’s world to describe the rheological response of materials. There are of course, also

a set  of models which only are developed using microscopic theories  or in terms of

computer  simulations,  and those the discussion of such models  will  be there for the

advanced learners.



So,  with this  we will  now close the  discussion related  to  the non-linear  response of

complex materials.


