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Strain, convected rates and non-linear models

In the course on rheology we have seen several aspects of rheological measurements and

the analysis of rheological response using material functions and in the process we also

looked at several models and from time to time we have reminded ourselves that the two

most  predominant  modes  of  rheological  observations  are  related  to  steady  state

characterization which includes steady shear or steady extension. 

And the other most common one is related to oscillatory shear stress relaxation creep, but

all of them at small deformations or in the linear viscoelastic range and we know that for

engineering  applications  deformations  can be arbitrarily  large and therefore,  the how

does the material microstructure respond to large deformations is something that has to

be  understood  for  us  to  say  that  we  understand  the  rheological  response  of  these

materials.

So, therefore in these segments of lectures we will review and try to understand how do

we discuss the non linear response non linear rheological response of materials and what

are the tools  that  are  needed for us  to describe  the non linear  response as  has been

discussed several times before. So, what we will do is start with definitions of strain we

have seen earlier that we define strain through infinitesimal strain tensor which is only

valid for small deformations.
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But for large deformations we had gone through and looked at qualitatively what strain

tensor should be for large deformations we will define it in this segment of lecture and

then we will also look at the convected rates we have emphasized this time in again that

for the rates to be frame invariant and for rates to be proper instead of using partial or

substantial derivatives we need frame invariant rates and especially for quantities such as

stress and strain these frame invariant rates are very useful in determining physically

meaningful rates.

So, as an example of that  we will  look at  the upper convected and lower convected

derivatives  which are quite  commonly  used in describing  the non linear  response of

materials. Then we will quickly review the non linear models which are commonly used.

This discussion will be preliminary and for advanced learners of course more discussion

has to be followed in terms of many of these non linear models their origin and how and

under what situations are, they very useful. And finally as an example of a non-linear

model  we will  review the  governing  equations  as  well  as  response  of  the  Giesekus

model. So, now going on we had defined strain earlier qualitatively.
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So, we will quickly summarize saying that similar to stress and strain rate tensor strain is

also a tensor and of course, we are familiar  from school times that change in length

versus initial length is what strain is and so from a point of view of our course the kind of

things that we have to remember is we have been saying that at time t is equal to tau and

at time t there are material different configurations and at this time we had indicated

position of a material particle using x tau while at present time here using x. And what

we are interested in knowing if I take any two material points and sort of a material fiber

which joins them what we are interested in knowing is what happens to this material

fiber after sometime.
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And so therefore what we are interested in knowing is what happens to d x tau and d x

and importantly what happens to its length. So, because to again conform to what we

intuitively say is strain material and of course given that the deformation field itself is 3-

dimensional we have basically a strain tensor which has 9 components and of course, we

work with infinitesimal strain tensor in discussion of linear visco elasticity. 

And so depending on the reference or basis in this segment we will define these other

strain  tensors  and these  strain  tensors  will  have  the  quality  that  they  will  reduce  to

infinitesimal strain tensor whenever deformation is small and which is again an expected

thing,  that  these  strain  measures  are  valid  for  arbitrarily  large  deformations.  But

whenever deformation is small or for linear viscoelastic response they will reduce to the

infinitesimal strain tensor.
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We will also see that if there is no deformation for example, if there is only rigid body

translation or there is rigid body rotation then these strain measures will also reduce to

expected quantities. For example we will see that E and E tau will reduce to 0, while

finger strain tensor such as B will reduce to unity. And so now, these unit tensor or zero

tensor they will reduce to and the time derivatives of these strain measures are what are

useful in terms of applications in non-linear description of rheological response and for

these time derivatives we will use convected rates. And again for advanced learners we



can show that how the convected rates of strain are related to in fact, strain rate tensor

and velocity gradient tensor.
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So, let us now define the strain tensor itself. So, as we have said there is material fiber at

time tau and this material fiber has to be related. So, at time tau we have a material fiber

which is at time tau and this material fiber has to be related to at present time which is t.

And in fact, it is the relationship between the two which defines and this is something

called deformation gradient which we have defined earlier and remember that we have

also talked about that if you want to measure strain it is not only important to look at

quantity  like this,  which  is  just  saying that  how is  this  material  fiber  changing with

respect to the present material fiber. We actually need to know a quantity which is of this

kind.

So,  where the length  of the material  fiber  is  important  and so these are  the  type of

quantities which are involved in defining strain. So, therefore the strain tensor is defined

as the from the deformation gradient as F T transpose dot F T. So, from deformation

gradient we can define the strain tensor and we subtract the unit tensor so that this strain

tensor reduces to 0 whenever we have rigid body translation and rigid body rotation. 

So, for rigid body translations and rotations this tensor will reduce to unity so that the

overall E tau will reduce to 0. Similarly we commonly define finger strain tensor which

is given as this. In this case the basis is used as any time tau and the present time with



respect to any time tau is what is used for defining the deformation gradient and again

this  strain  tensor  E  will  reduce  to  0  whenever  we  have  rigid  body  translation  and

rotation. And of course, B will reduce to unity whenever we have rigid body translation

and rotation.
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So,  just  to  rewrite  the  strain  tensor  we  could  write  them  in  terms  of  displacement

gradient which we have defined earlier. So, this is a matter of algebra to try to write these

quantities which is the deformation gradient in terms of displacement gradient and then

we can show that these strain tensors are related to deformation displacement gradients.

And we can see here that there are terms here which are of the order of displacement

gradient  itself  and then there are terms which are of the order displacement  gradient

squared. 

So, this is very similar to a function where if f of x is there, then what we have is some

terms are of the order x and some other terms are of the order x squared. And if x is very

small then we can ignore the x squared term. So, for small values of x x squared will be

much less than x and therefore can be ignored.

So,  we  can  see  here  that  if  displacement  gradient  is  very  small,  in  other  words  if

deformation itself is very small then the strain tensors will reduce to this and it should

not be a surprise to us that in fact,  half times H plus H transpose is nothing but the

infinitesimal strain tensor. So in fact, we can work with some of these details and then



just get familiar with what happens to these strain tensors for couple of examples and to

take the most common example that we have used in this course which is Simple shear

flow where there is one dimensional flow with shear in y direction so that we have only

one component of velocity gradient nonzero and of course, the overall strain is basically

an integral from any time to present time gamma dot y x d t to prime. And therefore, we

can write the anytime configuration of a material point in terms of configuration at the

present time.
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So,  based on these and definitions  of  the deformation  gradients  we can see that  the

deformation  gradient  is  for  sym for  simple  shear  has  only  1  non-diagonal  nonzero

element while all the diagonal elements are 1. If the strain is 0 for example, is if v x itself

is 0 then, del v x by del y will also be 0 and gamma dot y x will be 0. In that case both F

tau and F will reduce to unity. So, for rigid body motion in which case gamma dot y x is

0 we also have gamma y x 0 and in that case F tau and F will be unity. Otherwise of

course, gamma y x and minus gamma y x inform us as to how much is the amount of

shear that is being imposed on the material.
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So, when we look at the strain tensor in simple shear flow again by working with algebra

based on the definitions we can see that it is basically multiplication of the transpose of

the deformation gradient along with itself and then subtraction of the unit tensor and we

get for a simple shear flow the overall strain tensor is given by half gamma y x gamma y

x squared. So, this is the square term which is the unusual term compared to whatever we

have been used to. In class from earlier times including our initial classes and strength of

materials given that we are looking at small deformations the strain infinitesimal strain

tensor is what we are familiar with. So, we can see that if gamma y x is very small then

in that case the second order term can be neglected and we get the infinitesimal strain

tensor.

So, whenever gamma y x is very small the square term can be very can be neglected with

respect to the gamma y x and therefore it reduces to infinitesimal strain tensor. And again

this is intuitively what we are more comfortable with that given the only non diagonal

term one non diagonal term is nonzero. So, therefore this is an example of simple shear

deformation. 

But when simple shear deformation happens over arbitrarily large quantity then we have

this gamma y x squared also and this term also contribute to the deformation. You can

see also that even though the material has been subjected to the shear deformation in the

diagonal terms there is a representation of a or there is an existence of gamma y x. So



due  to  the  simple  shear  being  imposed  on  the  extensional  element  or  the  diagonal

element there is a presence. And so, it therefore is intuitive

now that  whenever  we  have  large  deformations  and  non-linear  response,  non-linear

rheological response of materials even though we are imposing only simple shear flow

the material can respond and give us non the normal stress differences. So, even though

only shear stress is being imposed on the material  we also will have normal stresses

generated in the material.
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And So, the similar continuing on we have now the extensional flow flow description

where we saw that the overall velocity is only in the z direction. So, this is like where we

are pulling the material in the z direction and it contracts in x and y direction. And we

have  seen  this  information  earlier  in  the  course  and  so  where  we  can  define  the

configuration at any time tau in terms of the present configuration and generally for these

extensional flows we define the two ratios, ratios of these two configuration as lambdas

so called stretch ratios. 

So, therefore in terms of stretch ratios we can define the deformation gradients and these

deformation gradients can be used to calculate the strain tensors. And therefore, the strain

tensors  are  basically  incorporate  the  stretch  ratio  square  terms  depending  on  which

definition we use we can it will be 1 minus lambda x squared or 1 over lambda x squared

minus 1. And the finger strain tensor of course, is only lambda x squared, lambda y



squared and lambda z squared. And so, again we can try to see whether these terms what

happens to them when we have deformation very small.
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So, basically lambda x is akin to defining. So, if we have this is the original length, so if

we have the original  length and because if  this  material  gets  deformed and the now

length changes. So, strain of course is defined in terms of the change in length versus the

original length. So, strain is defined as delta l by l. While stretch ratio on the other hand

is defined as l plus delta l divided by l. So, whenever deformation is 0, so if there is no

deformation then delta l itself goes to 0 and therefore we have strain going to 0 and

stretch ratio actually becomes 1. So, therefore, stretch ratio is also useful in terms of

determining the overall behaviour of the material.
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So, based on this simplification as to how strain and stretch ratio was related we can

define it in terms of the strain which is epsilon and these are exponential terms and if you

work with the overall algebra, if epsilon is very small then e to the power minus epsilon

can be simplified as 1 minus epsilon. So, given these simplifications we can show that

the overall the strain tensors both E tau and E will reduce to the strain tensor which we

know as infinitesimal strain tensor. 

And again  this  is  something which we are familiar  with the fact  that  since in  the z

direction there is only strain epsilon and given that this is an incompressible material

with Poisons ratio being 0.5 what we have is in the other two direction x and y direction

we have contraction and the contraction is minus half time epsilon. So, this is something

which we again learn in terms of the infinitesimal strain tensor for a uniaxial extension or

tensile deformation. But for a overall material deformation which is arbitrarily large in

terms  of  stretch  ratios  the  strain  tensor  E  tau  and  E  are  given  by  the  following

expressions. So, with this now we have finished defining the overall strains.

Now in the next segment of the lecture we will look at the convected rates and then look

finish up by looking at some non-linear models which are very useful for describing the

non-linear response of materials. 


