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Normal Stresses – 2

So, in the previous segment of the lecture we saw that macromolecules under shear lead

to the presence of non-stresses, then we saw that how stress tensor for simple shear looks

like for viscous or linear viscoelastic materials and also argued that it would be normal

stresses  would  arise  in  case  we  have  a  non-linear  response,  which  implies  at  large

deformation response of materials. And to account for such large deformation response

of materials, we need the model which is also non-linear.
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And the example that we will look at now is the upper convected Maxwell model. So,

the upper convected Maxwell model when we use the convected rate the convected rate

of the stress gives rise to additional terms. So, the expression here is given for the upper

convected Maxwell model, but only the yx component. As you can see that its a fairly

complicated equation with lots of terms there and therefore, for at least these segments of

lectures where we are discussing behavior more qualitatively it is important for us to



understand  some of  the  idea  behind  these  equations  and  then  for  the  more  advance

learners we can have complete mathematical development of these equations.

So, the first term here which is basically same as what we had earlier, which is the partial

rate of change of the stress itself. The next set of terms that you see are basically what

are also there in Navier stokes equations or also there in any time we have the material

derivative. So, therefore, these two together are basically the total derivative of the stress.

One which accounts for change in stress with respect to time only keeping the position

fixed, the other one is when the overall change in stress due to change in position and of

course, while change in position the material also changes in for example, vx is del x by

del t. So, partial derivative of a x with respect to time is vx so. In fact, these terms are

arise also naturally due to chain rule given that tau yx is the function of not only time and

x also.

So, therefore,  the material  derivative  is  of course,  measure of rate  of change of tau;

however, that is not a complete measure of stress rate in which is frame in variant and

which can be used for arbitrary large deformation. There is an additional term which

basically you can see where this velocity gradient is getting multiplied with the stress

components.

So, this is the term where ones term where velocity gradient is multiplying with some

components of stress and other case the some components of stress are being multiplied

by with the velocity gradient. So, these are. In fact, the convected terms because for

example, if there is velocity gradient if is 0 of course, naturally these terms will fall off

and. So, these are the convected terms which lead to the overall rate of the convection in

the material. In fact, what you can see is, even if we have a situation where the partial

derivative of stress with respect to time is 0 we can still have the convected rate non

zero. So, therefore, we have the convected rate includes terms.
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So, given that we are instead of choosing the partial derivative we are going to choose

the convected rate. The convected rate of a tensor quantity includes the change or the rate

with time which is the partial derivative, which is the partial derivative then what is rate

with position which is basically the inertial terms form the navier stokes equation very

similar to those and so, there are terms which indicate basically special derivatives and

then we finally, have rate due to deformation.

And so, even if things are not changing with time, even if things are not changing with

position the overall convected rate of tensor will in fact, have non zero values. So, that is

the key characteristic of convected rate and that is what we will see in the example that

we are looking at of simple shear. So, in case of simple shear we are going to look at a

steady state situation, in which case we will see that this term will fall out we will also

see that the special  derivatives  will  not be there ;  however, this  term will  contribute

additional  this  overall  convected  rate  which  is  due  to  deformation  will  contribute

additional terms.

Now why is  this  model  non-linear?  If  you see  these  terms  which  were  there  in  the

original Maxwell model itself are of course, linear. But here velocity is multiplying with

there is multiplication involved in stress derivative with velocity. So, therefore, these set

of  terms  are  non-linear,  similarly  here  also  the  velocity  gradient  is  multiplying  with

stress.  So,  again  these  set  of  terms  are  again  non-linear  where  two variables  are  in



available to us in the form of a product the right hand side of course, still remains the

same.

So, if you see due to this upper convected Maxwell model where we have replaced the

partial stress rate with a convected rate gives us a lot more set of terms and each of these

terms signify in terms of change with time, change with position and change due to

deformation. So, now, let us look at what happens to upper convected Maxwell model in

simple shear flow. So, we are again for this segment of the lecture we are not deriving

the equations and we are not starting from the initial equations.
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But  the  final  equations  which  are  governing  equations  for  simple  shear  of  upper

convected Maxwell model again there will be four components because we have tau xx,

tau yy, tau zz as the three normal stresses and then of course, we have the shear stresses.

And so, what we can see is the tau yy and tau zz term are very similar to what they were

for Maxwell model.
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So, just to remind us again these are the governing equations for Maxwell model tau yy

and tau zz. So, they remain entirely identical, but the terms for tau xx and tau yx get

modified due to the non-linear terms which are present from this  equation.  Now the

special derivatives will always be 0 in many of the situation of simple shear example V x

is non-zero, but it does not depend on anything does not depend on x and z of course, we

are dealing we only two dimensional situations.

So, z derivative is not involved and V y itself is also 0. So, therefore, these terms will

rarely contribute to any of the rheometric flows equations, its only these terms which are

deformation change due to deformation in the material  which will contribute.  So, for

example, we are looking at V x as a function of y.

So, this term will certainly be present, while V x is not a function of z. So, therefore, this

will go to 0 and since V y itself is 0 flow is only in x direction all these terms will drop

out. So, therefore, there is a greater simplification and tau yx del tau yx by del t the

partial  rate  as similar  to Maxwell  model  itself,  but  there is  only one additional  term

which is  based on the non-linear  terms.  Similarly  in  the x component  also we have

similar terms. So, now, we can actually look at what happens to this in the steady state.
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So, we will first look at the derivatives which are with the equations, which are with yy

component. So, since we have tau yy plus is 0 and we are looking at steady state when

the derivative with respect to time goes to 0 we have tau yy going to 0 similarly tau zz

will also be 0; so given these two situations these two conditions.

Now we can look at the shear component which is the second equation that we have

written here. So, we can see that that also involves tau yy, but at steady state tau yy itself

will be 0. So, therefore, the overall equation will reduce to what it was earlier. So, in case

of shear component the upper convected Maxwell model will again lead to an equation,

which is similar to the Maxwell model itself.

So, what we can see clearly in this case is as far as viscosity or stress relaxation or

oscillatory shear behavior are concerned, the upper convected Maxwell model response

will  be  identical  to  the  Maxwell  model  response,  response  is  same as  the  Maxwell

model.  In fact,  these two components  being 0 also is  similar  to  the Maxwell  model

response. However, if we look at the governing equation for tau xx, which is the first

equation here we can see that there are two additional terms which are they coming from

the stress rate which arises due to deformation in the material.

So,  we have  del  V x  by  del  y  which  is  gamma  dot  yx  and similarly  del  vx  being

multiplying tau yx and tau xy of course, we remind ourselves that this is the symmetric

tensor. So, tau yx and tau xy will be similar. So, what we have therefore, is tau xx plus



lambda del tau xx the partial derivative minus 2 times tau yx gamma dot yx is equal to 0.

So, you can see that given that dxx is 0 the right hand side is 0, but these terms together

actually give us two different terms which are related to they get added on to each other

and therefore, we get an additional term.

So, at steady state steady state of course, we know that the time derivative will go to 0

and therefore, what we have is tau xx is equal to 2 tau yx into gamma dot yx. There is a

factor  lambda also which have omitted here remember this  lambda, which has to be

written and therefore, I will add that here. So, there is a lambda here and that lambda has

to be also added here and we know that steady solution for shear itself is that tau yx is

equal to eta times gamma dot yx. So, just recall our self that tau yx is equal to eta dot

gamma dot yx.

So, that can be substituted here and therefore, we will get two lambda gamma dot yx

squared. So, what we can see here is the, normal stress which arose in the material in this

case the upper convected Maxwell fluid is related to the square of the strain rate in the

material and of course, it is also proportional to the relaxation time.

Remember that relaxation time is an indicator of the elasticity in the material higher the

relaxation time more is the elastic contribution and therefore, the normal stress which

arises in an upper convectional Maxwell fluid is also more if we apply a higher strain

rate or the relaxation time of the material itself is higher. Of course, whenever we apply

higher strain rate we are giving material less response time and we know that as we give

less and less response time we expect material to exhibit more and more elastic behavior.
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So, these features are very nicely captured in upper convected Maxwell model and. So,

we have tau xx given by two eta lambda gamma dot squared tau yx of course, means

very similar to what a Newtonian fluid behavior is, and we have seen earlier that this eta

therefore, is interpreted as 0 shear viscosity, because we cannot get shear thinning or

shear thickening or other responses from these kind of models.

So, we will also therefore, should not be surprised that they are far more complicated

models  which are available  in either  computational  packages or in  terms of deriving

some of the behavior of either of colloidal systems or macromolecular systems, because

even a more complicated model like upper convected Maxwell model shows that normal

stress  arises;  however,  shows  that  there  is  no  shear  thinning  shear  thickening.  And

similarly it also shows that the not all three normal stresses are non-zero. In fact, two of

them are 0 and only one is non-zero. And so, if for the upper convected Maxwell model

the normal stress difference is tau xx minus tau yy and of course, same is true for sigma

xx minus sigma yy and it is two eta lambda gamma dot y square, while the other normal

stress difference which is yy zz is 0.
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And for most general fluids we can therefore, try to characterize by doing an experiment

or by doing a simulation or doing a characterization, and trying to see what is the normal

stress differences in these fluids.

So, therefore, we can define our material function in terms of normal stress differences

and the idea is to apply a constant strain rate in simple shear mode. At time t is equal 0

therefore, we apply a constant strain rate and if we use lets say device such as cone and

plate the velocity is in phi direction and the velocity changes as a function of theta and

therefore, we use gamma dot theta phi.
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This  is  just  so,  that  we become familiar  with more and more what  are  the types  of

components involved in different types of geometries. So, if we have a cone and plate

device the rotation leads to phi motion and the angle this angle which is measured is

theta and therefore, the velocity here is because of rotation of cone and here velocity is 0

because  plate  is  stationary. So,  velocity  is  0.  So,  therefore,  in  this  direction  there  is

change in velocity. So, phi is the direction of flow and theta is the direction of shear. This

is very analogous to what we saw earlier in case of parallel plate in this case of course,

we had y nd x. So, x was direction of flow and y was the direction of shear.

So, therefore, we apply this gamma dot theta phi and we have phi a constant value and

we measure the stresses and these stresses are of course, measured once the steady state

is reached and therefore, we are measuring values which are independent of time, and

once we measure these values we can define a set of normal stress differences basically

two normal stress differences tau phi phi minus tau theta theta and of course, its same as

sigma phi phi minus sigma theta theta or tau theta theta minus tau rr.

In general we use the first normal stress to be based on the direction of the flow and the

second normal stress based on direction of shear. So, therefore, n 1 is defined as tau 11

minus tau 22 or sigma 11 minus sigma 22 and similarly the normal stress difference

second one is defined as tau 22 minus tau 33 and sigma 22 minus sigma 33. So, given

these definitions we can see that for the upper convected Maxwell model N 1 is shown to



be non-zero; however, N 2 is known to be 0. Now as far as realistic materials are con are

concerned it is generally known that normal stress differences both are present.

So, we have N 1 and N 2 are both exhibited by materials such as let us say polymer melt

of course, same would be true for a colloidal dispersion or a macromolecular solution

also and generally for many of these material N 1 is generally positive and it is also

usually an order of magnitude greater than N 2 and N 2 many times is observed to be

negative.

So, these are based on general observation of variety of materials. So, when we develop

new models or when we try to understand the mechanistic features what is leading to its

important for us to try to say why the normal stress difference is positive in one case and

why it may happen to be negative in few materials or similarly what is the reason for

normal stress difference, which is first normal stress difference N 1 is much larger than

the second normal stress difference. So, given these behavior the other feature which is

also commonly seen is the fact that the normal stress differences are functions of strain

rate. So, therefore, the normal stress differences are not constant as is predicted by the

upper convected Maxwell model.

So, like we saw earlier case where Maxwell model by itself was able to give us a good

response in terms of an exponential  decay for stress relaxation,  in case of oscillatory

shear it was able to show from terminal viscous response to a glassy elastic response;

however, when it comes to realistic materials there are several other feature which have

which are observed and therefore, Maxwell model is not really adequate though it does

capture some elemental ideas of viscoelasticity.

So, now, in this case also upper convected Maxwell model shows in elemental behavior

in terms of normal stress difference which are non zero; however, it shows the normal

stress differences which are only related to strain rate in terms of square while what is

observed in most cases is that they are functions of strain rate other than gamma dot yx

squared. So, therefore, the behavior is not exactly what is shown by upper convected

Maxwell model.

So in fact, just to just the way we use here the behavior that we can define material

function which is this divi the stress divided by strain rate, in this case also we could

define a material function which is this two eta lambda if it derived divide tau xx by



gamma dot y x square. And in fact, that is what is precisely done in definition of material

function.
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We  define  a  normal  stress  difference  coefficient  and  the  normal  stress  difference

coefficient  are  divide  defined  based  on  the  basically  the  ratio  of  the  normal  stress

difference to gamma dot theta phi squared.
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So, in case of upper convected Maxwell model, we can clearly see that psi one which is

N 1 divided by gamma dot yx square or gamma dot theta y squared as we been writing



this will end up the being in terms of 2 lambda eta gamma dot theta phi squared divided

by gamma dot theta phi squared and therefore, we have both of these terms cancelling

each other and in the end we get psi 1 which is a constant value similarly psi 2 is 0

because N 2 itself is 0.

So, since this itself is 0 we have psi 2 0. So, in for realistic materials psi one itself is a

function of gamma dot theta phi and psi 2 will also be a function of gamma dot theta phi.

So, this behavior is not shown by the upper convected Maxwell model and so, clearly the

basic mechanism that we have discussed in terms of stretching and orientation, and if we

do a microscopic theory of macro molecular solutions using a model in which stretching

and orientation are included we can show that model is very similar to upper convected

Maxwell model will arise in. And since therefore, that can explain only the presence of

normal stress difference which is a constant psi 1.

So, naturally when we have more mechanisms. So, clearly stretching and orientation are

not  sufficient  mechanism,  to  explain  shear  thinning  or  the  fact  that  normal  stress

difference coefficients are functions of strain rate in case of a real complex material such

as polymer melt or a solution so, clearly more mechanism have to be incorporated for us

to explain the more complicated behavior of these systems.

So,  in  summary  we  have  defined  the  material  function  in  terms  of  normal  stress

difference there are two because we have three normal stresses that arise and we can

define them in terms of either normal stresses or normal stress difference coefficients.

And so, with this we can now conclude our discussion related to normal stress difference

coefficients and now move on to the next the aspect of elasticity of fluid behavior which

is related to the stress growth.
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And to do that let us again consider the colloidal particles under shear and this qualitative

picture we have seen earlier also, the fact if colloidal particle system is stationary it will

form the this cluster of particles and they are all networked with each other and basically

we have a percolated structure and therefore, in general the viscosity of such systems we

said will be higher.

But if this  system is sheared for example,  the top surface is being moving at  higher

velocity compared to let us say the bottom plate which is stationary then in that case

these some of these particles are being forced to move at a different velocity compare to

the others, and that will eventually lead to may be cluster breakage and therefore, much

smaller sizes of cluster and also there is no percolation and clearly in this case therefore,

viscosity will be much lower. And so, we discussed said this qualitative picture while we

were looking at the shear thinning nature of many of the colloidal dispersion.

Now what we can also think about is what happens as a function of time when I take a

material which is at rest, and then apply a strain rate and then look at how does this

breakage of cluster happen as a function of time. And is there any elasticity that arises in

the material during this period of breakage of bonds between different particles.
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So,  that  can be graphically  pictured  and it  is  shown here that  lets  say if  we have a

network of cluster and stationary state  the particles  are of course,  formed a network

which is of percolated cluster and let us consider one of these clusters basically all these

particles are joined, because they have an attractive force and that attractive force can be

thought of as a spring. As so, there is an energy required to pull this particle apart we

actually need to apply some force so, that these particles are pulled apart.

So, whenever we have shearing being applied on these materials what happens is these

particles are pulled apart and therefore, the bonds between these which is in the form of

an attractive force between these particles gets pulled and because of this spring is pulled

there is an elasticity associated with it. So, if we let us say deformed for only some extent

and do not apply large deformation then there is a chance this material can again the

particles will come closer and therefore, again the network of clusters that was observed

will be back there. So, therefore, there is again elasticity and recovery possible with such

bonds between particles. However, if the strain rate which is applied is large enough and

the deformation therefore, applied is large enough the particles will actually separate. So,

in this case what happens is, we will  again see the overall  viscous behavior and the

overall viscosity or the stress required to move may appear to be smaller.

So, in general what we expect is when we start shearing this material as a function of

time, as soon as we apply the strain rate and as soon as we apply the deformation the all



these  bonds will  lead  will  resist  the deformation  and therefore,  the  stress  within  the

material will grow rapidly. And beyond a certain point when these springs actually break

or the bonds between the two particle break, then we have these stress either decreasing

or becoming constant.

And so,  therefore,  we generally  have in these viscoelastic  material  what is  called  as

growth and. So, stress growth is usually observed during either a simple shear flow or an

extensional flow, again the idea is to apply constant strain rate and then look at stress as a

function of time and by looking at stress growth and we can get an idea about what is the

elas what are the elastic contributions within the material and therefore, we can again

make  a  hypothesis  regarding,  which  are  the  mechanisms  which  are  important  in

determining the viscoelastic response of these materials.

So, in the next segment of the class we will define stress growth and look at how again

Maxwell  model response is there for stress growth and for a non-linear deformation,

which means a large deformation what kind of stress growth is observed for a system

such as colloidal particle system or for a macromolecular system. 


