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Normal Stresses – 1

In the course on rheology, so far we have looked at the response of complex materials in

terms of steady shear, in which case a constant strain rate is applied and then steady state

when is reached we measure the stress and therefore, measure the viscosity.

So, we saw for example, that viscosity can be shear thinning shear thickening and the

simple model that we used to understand some of the variation was the Carreau Yasuda

model and then eh similarly we looked at the linear viscoelastic response in which case

we looked at a stress relaxation we looked at oscillatory shear and creep. And again in

each case we defined material function and we looked at the response of Maxwell model

or a standard linear solid model and.

So, with that we reviewed the response of materials in two broad classes categories of

response, one is the steady shear response and where only the shear stress is involved

and the other was small deformation or the linear viscoelastic response.

Now, there are many situations in which in steady shear in shear a normal stresses are

key  indicators  of  elasticity  in  materials.  So,  therefore,  the  measurements  of  normal

stresses during simple shear experiments is very useful in terms of understanding the

viscoelasticity of complex materials. Similarly the time dependent nature of stress during

simple shear or a study or an extensional flow is also of interest. So, therefore, in these

few lectures, we will look at the response of materials  to understand how do normal

stress differences arise in viscoelastic materials and how stress growth is useful in terms

of characterization the viscoelasticity. So, both of these are key features of elasticity in

fluids.
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So, therefore, in this set of lectures we will first look at macro molecules under shear

which we have seen in earlier and therefore, we will review it quickly, and then we will

see what are the state of the stress given let us say a system such as macro molecule is

undergoing simple shear and then we have we will look at the upper convected Maxwell

model, which will be useful in terms of understanding the normal stress differences and

how do they arise.

Finally we will also look at a colloidal dispersion under shear and then try to understand

what is meant by stress growth during steady shear experiment.
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So, again to the overall frame work that we have been following that we can understand

response qualitatively, but we define material functions to quantify the material response,

and then we also look at some simplistic constitutive model so that we can understand

how the material functions for realistic materials are. So, therefore, we have looked at

viscous response, we are still continuing to look at viscoelastic response and in some of

future lectures we will look at the thixotropic and the yield stress material. Similarly we

have already started doing quantification of material response.

Through viscosity relaxation modulus storage modulus and creep compliance and this set

of  lecture  for  example,  we  will  look  at  stress  growth  viscosity  and  normal  stress

differences  as  additional  set  of  measurements,  which  are  again  done  under  control

conditions.  And then of course, we continue our journey also by parallely looking at

some phenomenological models, which are also simple model, which can eh explain to

us it can show us the basic mechanisms which are prevalent in terms of generating the

behavior that we are studying using these material functions. So, for example, we already

looked at Carreau Yasuda and Maxwell model and in these set of lectures we will look at

for example, the upper convected Maxwell model.
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So,  memorize  again  our  discussion  related  to  macromolecules  under  shear,

macromolecules in that equilibrium can be considered to be spherical blob because the

malo macromolecule is coil like, and when the shear because these some segments of

polymer are dragged faster because of their overall shear flow we have stretching and

orientation of macromolecules.
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And we have also seen this picture in terms of dumbbell, where two beads are connected

using a spring and we understand that when shear is applied the spring gets extended or



therefore, there is stretching involved and similarly the spring on average may also orient

in the direction of the shear and therefore, there is a change in orientation of the object

which originally to begin with spherical and even in all these different pictures we should

always remember that it is a basic at the macro molecular scale its a fluctuating picture.

So,  therefore,  the molecule  will  always not  have the shape,  but  its  fluctuating  in  an

average it  may be oriented in the direction of the shear. Just  a way here there is no

differential  orientation  once  the  shear  starts  there  is  a  preferential  orientation.  So,

therefore, both stretching and orientation takes place when we have this macromolecule

under shear and because of this what are the consequences.
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And so, we have summarized this consequences in the two sets of results that we have

seen in material functions, we saw for example, that stress relaxation there is a decay in

relaxation models.

So, what happens is, when we apply a shear molecule gets stretched and oriented, but if

the  deformation  is  kept  constant  because  of  the  thermal  energy  available  to  macro

molecule the segment starts relaxing the segments starts moving and in the end it reverts

back to this and therefore, there is a decay in relaxation modulus. Similarly when we

apply oscillatory shear there is a storage modulus which is the elastic contribution due to

the stretching and orientation of molecules and similarly of course, there is a phase lag

also because not the contribution is viscous is as well as elastic therefore, there is a phase



lag. In terms of steady shear property we saw that the consequence of the stretching and

orientation was that we get higher viscosity. So, because of the macromolecules also

present and the fact that is exchanges a friction with solvent, and it stretches in orients

will lead to a 0 shear viscosity, which is different compared to the solvent itself. And so,

these  are  the  consequences  or  the  signatures  of  macromolecules  stretching  and

orientation in material functions which are related to the polymer solutions.

So, today we will look at one more such a feature, which arises because of the basic

mechanism which are stretching and orientation.
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For  example  we  during  introduction  introductory  lecture  we  also  saw  and  it  was

expressed that when we apply a shear stress generally for viscous material, we would

expect only shear stresses to be there, but in case of polymeric material such as polymer

solution we will also get normal stresses.
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So, for example, if we have let us say fluid, which is let us say water and we apply

constant velocity on the top plate and then all these molecule start moving and of course,

we get the linear velocity profile. And so, in these kinds of cases what we will have in

the material is only the shear stress. But because this macro molecule is there and since

the macromolecule is getting stretched and the stretching leads to the normal stresses

being generated in the material because basically there is a streche stretching happens

and there is a tendency of the material molecule to actually revert back to its original

spherical shape. So, that is why we are denoting it using a spring. So, since spring is

there the spring develops a tension and therefore, this tension is consequent consequently

leads to the normal stresses in the material.

So, if we use the rectangular coordinate system to describe this simple shear flow, we

have tau y x which we have been talking about is the shear stress which is there in the

material,  but  we will  also have tau xx and tau zz and tau yy which  are the normal

stresses. So, therefore, in viscoelastic fluid, when we take it between the two plates we

will have. So, let us say it is a polymer molecule and therefore, we are again applying

steady shear experiment we will of course, have tau yx, which is the shear stress, but we

will  also have tau xx tau yy and tau zz as the normal stresses and this  is in case of

viscoelastic materials such as polymer solution. And so, given this eh situation where the

normal stresses arise, even though the only force which is being applied is a leading to



shear stress. So, the force which is applying for the motion is shear and therefore, there

are shear stresses in the material.

So, what happens is in case of viscoelastic fluid because of these normal stresses which

are generated in the fluid, in addition to the force that we have applied we will also need

to apply another normal force. Otherwise due to the normal stresses there is the tendency

of the two plates to separate.  So, the distance between two plates the separation can

change due to normal stresses. So, in case of a Newtonian fluid, we apply a force which

is leads to shear and therefore, we get shear stress. In case of a viscoelastic fluid we

apply a shear stress we naturally get the shear stress, but we also get normal stresses and

because of the normal stress we get a normal force also. So, therefore, if we measure this

normal force, then we can actually get an idea about what these normal stresses are. And

that is the principle behind measurement of normal stress measure the normal stresses in

the material. So, let us look at how do these normal stresses arise in different type of

fluids that we already know.

So, what we have seen what we are saying is we are imposing a full shear flow as was

drawn here and where we the coordinate system is basically we have the flow is in x

direction therefore, we have only velocity vx and it varies only as a function of y. And

naturally the derivative of velocity with respect to y is what we defined as gamma dot yx.
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And so, in this kind of a flow what we have is linear velocity profile and that linear

velocity profile will continue to change depending on how is strain rate. If strain rate is

constant then it is a linear velocity profile even if strain rate changes as a function of time

with respect to y the velocity profile remains linear; however, it can change as a function

of time. Because of this velocity profile only one component of velocity of gradient is

non zero and which is del V x by del Y because V y as well as V z are 0 and of course,

there is no dependence on x and z.

So, therefore, all these terms go to 0 and del V x by del y is the only non zero component

of velocity  gradient.  And because of this the strain rate tensor which is  nothing, but

gradient of velocity plus its transpose and half. So, what we have is two components of

the strain rate tensor being non zero and.

So, given situation like this where we have only two components of the strain rate tensor

non zero, what happens is even the stress tensor. Therefore, only two components which

are non zero.
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So, let us see how is, that the case. So, in general stress tensor of course, will have all

nine components, but since we are dealing with symmetric stress tensor, we have three

normal stresses and three shear stresses. Of course, we can split this into the isotropic or

the deviatoric part.



The  isotropic  part  is  basically  pressure  and  for  incompressible  fluid  we  know  that

pressure is an undetermined factor because for various values of pressure density does

not change. So, if there therefore, there is no influence on material behavior; however,

gradients in pressure are important, but the value of pressure itself there can be different

values of pressure for which the gradient is the same and therefore, behavior will be the

same. So, absolute value of pressure is not always not always determined in case of

incompressible  fluid then we have the deviatoric  stress and again that  six dependent

components are there.

Now once  we have  simple  shear  flow where  we mentioned  that  there  are  only  two

components of the strain rate tensor, for a Newtonian fluid where the stress is directly

proportional to the strain rate tensor, we again have two new times basically d.

So, you can see that because these are the only two component which are non zero tau yx

will only be the component which will be non-zero. Tau xx will be 0 because d xx is 0

similarly tau zy will be z0 because dzy is also 0 and by the way same is the case for a

non-linear viscous fluid also.

In case of non-linear viscous fluid for example, the Carreau Yasuda model or the power

law of fluids that we saw, the viscosity can be a function of strain rate that is being

applied and the overall dependence on of stress on strain rate tensor again similar to what

is there in Newtonian fluid case. So, the difference in between Newtonian fluid and the

general non-linear viscos fluid is the fact that, the viscosity can depends on strain rate.

And that is why if you recall  we had called this type of non-linear viscous fluids as

generalized Newtonian fluids. The behavior is generalized by rather than assuming mu to

be a constant material constant, it is a material function which depends on gamma dot yx.

But in case of non-linear viscous fluids also since dyy is 0 that multiplied by 2 eta will

again be 0 and tau yy will be 0.
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So, in summary what we have is in case of simple shear flow for viscous fluids, it does

not matter whether it is a Newtonian fluid or a non-Newtonian fluid such as the shear

thinning fluid as long as we assume viscous behavior the total stress tensor only has this

form.

So, there is a shear stress which is non zero and of course, the isotropic part of stress

itself is also non zero; however, the other components are 0. So, what we can observe is

that the normal stresses are identical in the sense that all the three stresses are minus p.

Now if you look at the deviatoric stress tensor it has only shear stress component tau xx

tau yy tau zz is 0 and therefore, we can say that normal stresses themselves are also 0.

Since the pressure is an undetermined factor as I mentioned earlier, what we do is rather

than looking at the value of these normal stresses themselves we can look at the normal

stress differences.

So, whether we look at the normal stress differences of sigma xx minus sigma yy or tau

xx minus tau yy we see that they are both z0. So, sigma xx minus sigma yy or tau xx

minus tau yy are both 0. Similarly tau yy minus tau zz or sigma yy minus sigma zz both

of them are 0. Since there are three normal stresses we could construct two normal stress

differences  which are independent  and therefore,  what  is  listed here is  both of these

normal stress differences are zero.



So, in a summary what we are saying is that if we apply a simple shear flow on viscous

fluids, which is steady shear flow and at steady state we look at the stray state of a stress

tensor, the state of the stress tensor would lead to normal stress differences being 0. And

that is what is indicated in this plot here when we said that the force which is being

applied with only be shear and in this case no normal stress or difference will arise. So,

there  is  no  normal  stresses,  stress  difference  will  be  observed  in  fluids  and  for

viscoelastic fluid normal stress difference will arise. And therefore, then it can be used as

an indicator of the mechanisms as well as elasticity that is involved in the material.

So, now, let us look at the stress tensor in simple shear for a general fluid. In case of a

general fluid what we have is again the same flow where we have taken the fluid in

between two different plates and since this is the viscoelastic fluid and we are imposing

velocity on it we can see that yx and of course, z is perpendicular to the screen and. So,

with this velocity gradient we can try to argue and ask the question as to what will be the

most general state that is possible.

So, we know for sure that tau yx must be there, because even for Newtonian fluid case

tau yx was there and we expect that to be there also. And additionally of course, we have

tau xx tau yy and tau zz which are the normal stresses, and we also have the other two

tau yz and tau zx as the two other shear stress. So, using material symmetry arguments

one can show that both of this will be 0 for simple shear flow. Basically if you look at

this a flow for example, if I use another coordinate system which is let us say rotated by

180 degrees then what I can do is that I can use the coordinate system where y prime and

x prime are basically rotated.

But in if you using these two coordinate system, you can actually show that the velocity

field will not change even if we use two different coordinate system and since velocity

field does not change the forces on any plane within the material will not change and

using these kind of arguments it can be shown that the normal stresses will be the only

stresses present, while the shear stresses associated with tau yz and tau zx will be 0. So,

based on material symmetry this can be shown.
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So, we will assume this to be the case and therefore, the most general state of stress

tensor for a fluid which has viscoelastic effect may be the following. So, this components

which are associated with tau zy and tau xz and tau. So, they will be 0.

So, therefore, normal stresses arise in simple shear flow and of course, just to remind us

this  we are  saying again  based on this  picture  the  fact  that  this  molecule  is  getting

stretched and can develop a tension it will lead to the the normal stresses arising in the

material. So, given that normal stresses arise in simple shear flow, the overall deviatoric

stress tensor also then therefore, will have five components two of which are same tau

yx. Therefore,  the four independent  components  of stress which are to be solved; so

unlike the earlier case where when we had a simple shear flow of materials.
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So, simple shear of viscous fluids we had only one component of stress and which is tau

yx. So in fact, all our earlier development we did with this only one components. So,

even when we rad wrote down Maxwell equation for instance we actually wrote it for tau

yx  components,  because  that  was  the  relevant  stress  as  far  as  simple  shear  flow is

concerned.  In terms of now what  we are saying is  that  if  there is  a simple shear  of

viscoelastic fluid, then we will also have tau yx tau xx and tau yy and tau zz.

So, why is it that we did not consider for Maxwell equation,  actually an example of

viscoelastic fluid why was tau xx tau yy tau zz not considered? So, what we can show is

since  Maxwell  model  is  a  linear  model  it  actually  fails  to  show any  normal  stress

difference. So, for a general fluid we expect that normal stress differences may not be 0,

now let us see what does a Maxwell model behave when it is applied in simple shear.
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So, when we look at Maxwell model the stress components of stress, earlier we had only

looked at tau yx and this is the standard equation which we have used earlier for analysis

assuming that the shear stresses, shear modulus, shear properties were the only important

things. Now given that we know that for viscoelastic materials, normal stresses can also

arise the other three components of the overall constitutive relation of Maxwell model

are also relevant.

So, it would read very similar to how it is for the tau yx compound, basically we will

have tau xx which is similar to tau yx term here then the rate of change of tau xx with

time, which is similar to tau yx rate of change with time multiplied by of course, the

relaxation time lambda and the right hand side is two eta times the strain rate tensor

component.

Since  we  are  looking  at  xx  component,  we  also  have  dxx  which  is  the  strain  rate

component xx. And of course, we have seen earlier that how D yx which is the shear rate

component is related just gamma dot yx. So, if we write down the governing equations

we have this four governing equations which need to be solved for us to look at what is

response of Maxwell model in simple shear, and since we are looking at steady shear at

steady state basically all these time derivatives will go away. So, therefore, at steady state

we can set all the time derivatives partial time derivatives to be 0. So, we have del tau xx

by del t or del tau yx by del t or del tau yy by del t or del tau zz by del t all 0.



So, given that this is the steady state and we can clearly see that if these two terms fall

out then tau yy and tau zz itself is 0, and since tau yy and tau zz is also 0 since dxx is

also 0 tau xx this term is also 0 therefore, tau xx is also 0. So, the only non-zero stress in

case of Maxwell model is really tau yx and so, at steady state normal stress differences is

for a Maxwell fluid are 0. So, even though Maxwell model is a viscoelastic fluid in fact,

it accounts for no normal stress differences.

So, we can add here when simple shear of viscoelastic fluid, which is linear we will

observe that there is only one component of stress. However, if we have simple shear of

non-linear viscoelastic fluid, then we have all the four component present. So, let us just

to highlight again if we have a viscous fluid or if we have a linear viscoelastic fluid we

will  only have one component  which is  the shear. However, if we have a non-linear

viscoelastic material, then we have all four components of stresses present in the material

and therefore, we can characterize the non-linear response.

Therefore now, one needs to look at as to what is meant by a non-linear viscoelastic

response, we have while defining linear viscoelasticity we have said that whenever we

confine  our  attention  to  small  deformations  that  is  linear  viscoelasticity  therefore,

Maxwell model can be used only for small deformations. When we do a steady shear

experiment we are actually taking the material and applying very large deformations to it

and therefore,  for normal  stresses which are measured cannot be predicted using the

Maxwell model.

So, the non-linear contour part of Maxwell model is arises when we use the correct form

of stress rate. The statement of Maxwell model is the fact that there is stress and stress

rate are related to the strain rate in the material. So, we have the stress and the stress rate

related to the strain rate and for stress rate we are using the partial derivative.
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However from a material objectivity point of view only when we use convected rate for

the stress rate, then we get a model which can be used for arbitrarily large deformation

and this  model  is  called  upper convected  Maxwell  model  and again.  So,  we can go

through the overall development of how does the upper convected Maxwell model get

derived,  what  we can  do is  do a  phenomenological  development  to  try  to  based  on

continu mechanics principle,  what are the types of terms which can be involved in a

constitutive relation and on the base of that we can going to collect terms together and

propose convected models.

The  other  alternative  is  of  course,  we  can  also  have  kinetic  theory  and  statistical

mechanical theories of polymer behavior, and using such microscopic theories we can try

to understand as to how convected rate  arises in  material  response whenever  we are

considering large deformations.

So, in the next part of the lecture we will look at how is this upper convected Maxwell

model useful in terms of understanding the normal stress difference in the materials.


