
Rheology of Complex Materials
Prof. Abhijit P. Deshpande

Department of Chemical Engineering
Indian Institute of Technology, Madras

Lecture - 44
Strain and Convected Rate- 1

So far, in the course, we have looked at the various strains and stresses and velocity

gradients and using these quantities. We did some analysis related to viscous fluids or

linear  viscoelastic  materials,  in  case,  we have  to  look  at  the  non-linear  response  of

complex  materials  or  in  other  words,  we  have  to  examine  their  behavior  at  large

deformations. We need measures of deformations strain tensor which is appropriate for

large deformation  similarly  since in rheology, we are interested  in  rate  of change of

quantities.

For example, rate of change of stress or rate of change of strain or even rate of change of

strain rate in such for such rate quantities we need to use materially objective or freeman

variant rates and convected rates are very used quite heavily in such considerations. So,

therefore, if we have to look at the non-linear response of complex materials we have to

make ourselves familiar with the finite strain measures as well as the convected rates

convected rates are one example of rates which are used. 

We also can use co-rotational rates or co-deformational rates and so, in the next few

lectures we will give the mathematical background to how are these measures defined

and how are these rates defined.

So, the overall framework which we will follow for today’s lecture is we will quickly

reiterate how the position of a material particle was defined, then we will formally define

the displacement and displacement gradients using which we can define also deformation

gradients  and once  these  are  defined these are  basically  the building  quantities  over

which we can define the strain measures.
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So, in todays and the next class, rather than define the overall strain measures as well as

convected  rates  formally, first,  we will  look at  the conceptual  frame framework.  So,

therefore, we will look at the description of how the deformation happens, if we are able

to put a hypothetical grid in the material and what happens to that grid. 

So, using this example of shear deformation as well as extension deformation we will try

to examine what happens to the coordinates what happens to the material points and how

could this information be used in terms of defining either strain measures or also the

convicted rates.

And so,  just  to end with we will  then summarize few concepts  which are related to

convected rates. So, after this set of lectures then we will formally define both strain

measures as well as convected rates later on.
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So, let us just quickly reiterate that a position of a material particle is eh defined in each

and every configuration we call the collection of all such material points a configuration

and we could define three distinct configurations and as we saw earlier that for more

solid like materials, it is the comparison between the current and the reference which is

used and for fluid like material. 

We said that configuration at any arbitrary time will be compared with respect to current

configuration in case of fluid because there is no such thing as a unique stress free state

or in other words there are multiple states in which fluid can be liquid can be stress free,

we will define current configuration as the bases.
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So, it is extending it this idea. So, we already said that reference configuration is the

basis for solids while current configuration as a basis for fluids.

(Refer Slide Time: 04:29)

So, the strain measures also, we had said similar to stress and strain rate tensor strain will

also be a tensor and simplified definition of strain of course, we know change in length

versus initial length, but for a 3 dimensional quantity we will define these strain tensors

which are E or E tau or B or C and we will see that all the finite strain rate tensors

reduced to infinitesimal strain tensor when deformation is small.
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Now, the various strain measures which we will define they will reduce to unit tensor or

0 tensor for translation and they will also reduce to unit tensor and 0 tensor for rotation

and of course, the time derivatives of these strain measures are will be used full and

convected  rates  is  what  is  required  to  get  the  derivatives  when  we  discuss  linear

viscoelasticity. 

We have already been saying that partial derivative of strain is equal to the symmetric

part of velocity gradient or is related to strain is equal to strain rate tensor, but we will

see that convected rate of the finite strain measure is what will be required to relate to

strain rate tensor.
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So, now let us look at the beginning the definition of a displacement.

(Refer Slide Time: 05:53)

So,  displacement  is  basically  how  a  material  particle  is  getting  displaced  due  to

deformation and flow. So, if we have a material and a point and let us say at the next

instant of time this material  has moved and deformed there is material  has point has

moved from one location to the other and therefore, we would like to know what is the

displacement.



So,  displacement  is  for  an  individual  material  particle  for  a  given  particle  material

particle and we define that as basically x tau which is the position of the material at time

tau minus x because this is at current time and we denote this by this. So, basically u is 0

at present time and that is the case because at tau is equal to T which is the present time x

tau is equal to x. So, therefore, since our the current configuration is our basic basis for

comparison  displacement  with  respect  to  the  present  configuration  or  the  current

configuration is always 0.

So, now what we will try to do is what happens to the displacement when you go back in

the past or when you go in the future. So, for example, this particular material particle

which is at time T was located somewhere else and at some time T tau which is in the

future is located somewhere else and maybe was located at some other point at some

time less than present. So, displacement material particle therefore, keeps track of what

is the position of the material particle with respect to the current position.

And so, that is how we have defined it we say displacement is nothing, but the present

position and position at any time tau and so, if we look at let us say a rigid body motion

then a rigid body motion will also actually imply let us say this is some time in the past

and since this block is moving it will move to the right let us say and even at some other

future time, it will move to further to the right. So, this is a block which is in all the

material points in this case are moving identically.

So, the all the material points; so, if you take any two neighboring material points they

have moved exactly the same way and in the next instant also they will move the same

way. So, therefore,  even though there is displacement  there is no deformation in this

case.  So,  what  is  of  interest  to  us  to  know is  actually  relative  displacement  relative

relative  displacement  between neighboring  material  particles  because only if  there is

relative  displacement  between  neighboring  material  particles  then  only  we  the

deformation can be there one caution here.

For example, if we have a rigid body rotation then let us say we have a disc which is

rotating and there are two material points let us say we pick here and we can see that at

some instants of time. So, at some instance let us say if we pick two different material

points. So, at some instants of time they were in this position and at some time in the past

actually their position will be towards the left because this overall body is let us say



rotating to the right and so, since this disc is rotating to the right again in some time in

future. So, tau greater than time which is present time this one is the present time tau is

equal to T and what we had written earlier was tau less than time.

And so, given that this block is rotating to the right what we will have is this set of two

points actually moving and now if you see the relative displacement of the two points is

different because the further away from the square you are the more will be the point. So,

let us say on the same graph. Now, if I draw the green curve and the black curve which is

at the present time and the red curve which is at the. So, what we can see is actually the

point and I will just choose another color to denote two different points.

So, you can see that this point has moved this much distance while another point which

we had donate denoted earlier has moved. In fact, much less distance. So, we can see that

displacement of blue point is greater than displacement of the yellow point. So, this gives

us an indication that even if we are looking at this relative deformation gradient as a way

of measuring. So, we are using relative and we are using neighboring particles to get this

displacement gradient we can clearly see that this displacement gradient is going to be

nonzero.

So, the displacement gradient displacement gradient will not be 0 for rigid body rotation;

however,  we  saw  that  displacement  gradient  is  0  for  rigid  body  translation.  So,

displacement gradient was 0 for rigid body translation. So, clearly relative displacement

or displacement gradient is useful in terms of tracking the deformation in the material,

but if digit body rotation is involved then it will give us a picture that there is nonzero

displacement gradient; however, we know that material is; In fact, not deforming.

So,  just  to  continue  the  definition  of  the  displacement  gradient  therefore,  the

displacement gradient then we define as we can define it in terms of with respect to the

current time or we can define it with respect to time at any arbitrary time tau and so,

given that in this course we may be using this configuration more time as the basis we

can define the H tau which is the relative deformation gradient which is nothing, but

gradient of u which is the displacement vector and since we are finding gradient of a

vector quantity the displacement gradient is actually a tensor and it is denoted by this in

since we are now familiar with the index notation also.
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So, we could write the same expression which we have written there which is in terms of

gradient of u is equal to del x tau by del x minus identity. So, the same equation can be

written in index notation as H i j tau is equal to. So, del ui by del x j is equal to del x i tau

by del x j minus delta ij. So, this is called the relative displacement gradient because it

with respect to the present configuration in solids as we said quite often this x tau will be

a specific reference configuration and in that case this displacement gradient is defined

as a unity minus the deformation the displacement the change rate in change of position

x with respect to change in position at any arbitrary time tau.

Now, these quantities which are involved in defining this gradient themselves can also be

used as a measure of deformation because this is telling us how the current configuration

is related to the configuration at any time tau if we look at what we are trying to say here

is if we have a material with and two neighboring points at any time tau, let us say this

tau is present time.

So, therefore, this is nothing, but the material fiber which connects the two neighboring

points and so, in anytime in the future the same let us say two material points are now of

course, connected through another material  fiber which we will call  tau where tau is

greater than time and so, how is the relative location as well as orientation of these two

material fibers is what is indicated if we evaluate a quantity like this. So, therefore, this is

comparing the hypothetical  material  particle  hypothetical  material  fiber material  fiber



connecting two material points again just to emphasize one material fiber was at present

time somewhere the same material fiber at some other time tau has become here and

therefore, this is the comparison between the two material fibers and so, we define this

quantity as a deformation gradient.

(Refer Slide Time: 17:08)

And so, which is what is defined here and deformation gradient again can be defined

with respect to the present configuration or the current configuration in which case we

will call it relative deformation gradient and it is denoted as F at given that it is at any

time tau which can be present past or future now looking at this quantity we can clearly

see that at the present time the deformation gradient will become unity as we saw earlier

that at the present time.

So, when tau when tau is equal to T what we saw is the when tau is equal to T, we saw

that u is equal to 0 and therefore, H will which is nothing, but del x tau by del x minus

unity. So, this will also go to 0 this  is also because del x tau by del x which is the

deformation gradient that we define just now is actually going to be unity because we are

using the same we are using basically the present configuration and this will  also be

present configuration because tau is equal to T. So, therefore, the deformation gradients

are unity always at the present time.

So, what we can just emphasize here is displacement gradient becomes 0 at present time

because x tau is equal to x and this also becomes 0. So, of course, there is no deformation



with respect to present in the present itself and therefore, the other deformation measure

also  which  is  the  deformation  gradient  becomes  unity  at  the  present  time  and

deformation gradient when it is defined with respect to any arbitrary time tau is denoted

and called deformation gradient for our course purposes most books which deal with

solid materials actually will define x tau as a reference configuration and therefore, this

will be called the deformation gradient or basis with base as reference configuration.

So,  now having looked at  the  definitions  of  deformation  gradients  and displacement

gradients  these  are  the  quantities  which  are  involved  in  defining  the  finite  strain

measures and we have already seen some of the characteristics of these displacement

gradient as well as deformation gradient we already saw that displacement gradient was

0 for a rigid body translation, but it was not 0 for a rigid body rotation similarly the

deformation gradient will be unity for rigid body translation or also for no deformation

itself, but we will again we can show that the deformation gradient will be non-unity

when there is a rigid body rotation.

So, clearly we need a strain measure which for rigid body rotation also should go to 0.

So, effectively what we need is really not just comparison of the material fiber and its

orientation, but also the magnitude of the material fiber.

(Refer Slide Time: 20:31)

So, the for example this material fiber that we are saying is we are comparing and let us

say this is at present time because tau is equal to T and then some other arbitrary time



where tau is either greater or even less than and then if we have this material fiber which

is dx tau we are not only interested in what is the orientation.

So,  orientation  clearly  in  one  case  is  here  in  this  case,  it  is  here  so,  orientation  is

different, but if you look at the length of it itself. So, in this case the length is given by

this while in this case the length is much larger. So, clearly between the two cases, the

length has increased at tau time and so, we are interested in quantities which are like the

measure of the; so, therefore, we are interested in quantities which are of this kind. So,

this is nothing, but the length of the material fiber and similarly here also the dx tau dot

dx tau will give us the length of the material fiber.

So, what we will find is that strain measures are defined using quantities which are of

this kind and so, in today’s class, we will not really define these quantities, but for now

the idea for us to understand is the fact that both orientation as well as magnitude of

these material  fibers  have to be compared with respect  to  each other  before we can

actually define the strain measure and. So, if it is a rigid body more rotation, then what

will happen we will find that this length will remain the same; however, the orientation

may change.

So, in that case we can again since the length is remaining the same we will find that the

strain measures that we use will go to 0. So, in case we define use these quantities then

we will  see  that  the  strain  measures  such  defined  will  be  0  or  in  some  case  unity

depending on which strain measures  we define  for  rigid  body translation  as  well  as

rotation and so, actually what we are what we would like to know is therefore, the how is

the material fiber oriented as well as so, the dyadic product that we have of this kind

which is actually the orientational tensor for the material fiber x tau; how is this related

to dx.

And this is the quantity then that can become a strain measure. So, we need a tensor

quantity which can map these two orientation tensors and these two orientation tensors

incorporate not only information about orientation, but also the magnitude of the fiber

itself as the diagonal term because a trace of this trace of this tensor is the length of

length of the material fiber and the different components of this will tell us what is the

orientation and so,  therefore,  these two quantities  have to be related  using the strain

measure tensor and so, this is what we will do define formally in a latter class.
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Moving on to looking at what happens to these displacement and deformation gradients

we will look at a some graphical example and to understand as to how material particles

are getting displaced in two hypothetical situations; one where material is undergoing

shear and another one where material is undergoing extension.

(Refer Slide Time: 25:22)

So, let us say that we have a fluid which is moving and we again in a case of extended

shear we just take a simple Example where again, it is a simple shear flow. So, we have

two parallel  plates  and the top plate  moving and because of this  there will  be shear



deformation in the material and if I take a small block in this material and let us say this

is at time T is equal to tau because this particular point will be moving little faster than

this  particular  point  and this  point  what  will  happen  is  in  some time  in  future  this

material block that I drew would have deformed like this, similarly, at some time in the

past this material particle would the block would be actually oriented like this. So, this is

at some tau which is less than T and then this is some tau which is greater than T.

So, now just to visualize this clearly what we can do is we can put a grid this is usually

what we can say coordinate system. So, what we are doing is let us say at this instant of

time I put a coordinate system and let us say this is our one direction and this is two

direction. So, therefore, we could say that this is x 1 coordinate and this is x 2 coordinate

or they of course, generally we know that x 1 coordinate is x and y 2 and x 2 coordinate

is actually y.

So, therefore, we generally use an xy or rectangular coordinate system for this problem.

So, just to keep the description generic let us say we have x 1 and x 2 coordinate and

along with these x 1 and x 2 coordinates we have of course, the base vectors which are E

and E y. So, these are the base vectors and since we are using a orthogonal coordinate

system rectangular  coordinate  system we also know that a dot x ey is  0 and also of

course, it is a fixed coordinate system.

So, with respect to this fixed coordinate system what we will clearly see is at any time in

the future when we are looking at the material anytime in the future we have material

which has moved to the right and the material has moved to the right as well as the shape

of the material element that I drew rectangular element has changed and similarly it the

same material point any time in the past had actually a different shape and of course, it

was to the left and it took some time to actually come to the same move to the present

position T.

So, therefore, we can see that each and every material particle is getting displaced. So,

this particular point was here and in some time in the future has reached here clearly

what we can see is if I compare the material points which are at the same x 2. So, for two

points which are located at same x 2 what I can see is they since this is only the motion is

only in the one direction this is basically because of simple shear flow that motion is

only in one direction.



So, these two points would move identically and therefore, there would be no relative

displacement  between these two material  points  and so,  this  distance as  well  as this

distance  as  well  as  this  distance  is  completely  identical.  So,  therefore,  we  know

displacement which is relative to each other for these two points right the two points the

two points which are located at same x 2 they in fact, have no relative displacement and

so,  clearly  if  we  look  at  the  displacement  gradient  here  some  components  of

displacement gradient will be 0. 

However, similar if we take two points which are let us say in different x 1 or a different

same x 1. So, two points at same x 1 at present time actually will not even be at same x

1.

So, let us say the two points actually one is displaced by some amount similarly when it

was in the past the two points actually have been displaced while in the present time they

were at the same x 1. So, clearly now there is a relative displacement.  So, there is a

relative  displacement.  So,  we  can  see  that  the  displacement  tensor  some  of  the

components are 0 and some other components are non-zero. 

So, in the next part of the lecture we will examine further using an extensional example

and also, then we will get an idea what if we embed a coordinate system which is in the

material itself and it moves along with the material system.


