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Lecture – 22
Introduction to tensors

In the previous 2 lectures on introduction to tensors we first caught introduced to the idea

of tensors, and then we looked at how scalars vectors which we are already familiar with

and tensors which we will use a quite a lot in rheology how are they related. And we also

started  looking  at  some  of  the  operations  and  the  overall  framework  that  we  are

following in terms of looking at description of vector, and tensor quantities is in terms of

3 different notations.
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So,  we  use  boldface  notation  if  we  want  compact  and  for  understanding  physical

significance and of course, this is not expressed for a specific coordinate system, when

we use index notation it is compact, and it is easy for manipulating terms and equations

and simplifying equations and so on. 

And these are generally expressed only in Cartesian coordinates of course, the complete

governing equations is what we need if we really attempt a solution for a given problem

either computationally or analytically. And since these are complete governing equations

they are fairly lengthy and also expressed in a specific coordinate system of interest. So,



in this lecture we are only looking at index notation and how it corresponds to a specific

boldface notation. 

(Refer Slide Time: 01:47)

 So, we already saw that the base vectors which are specific to certain coordinate system

we how we actually use them a using index notation. So, where i and j are the dummy

indices. 
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And so, just you summarize.
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He kind of the operations that we had seen we had seen how a dot product of 2 vectors or

a scalar product of 2 vectors or the curl ah or the cross product of 2 vectors how are they

expressed. And so, now in today is lecture we will look at how some of these operations

are carried out for tensors and to begin with we will look at multiplication of a scalar and

a tensor and this is again just to a see for example.



(Refer Slide Time: 02:31)

This is a tensor which we will use quite often and so, this is the boldface notation and

again to remind you that 2 underbars indicate that this is a tensor and of course, this is

specifically the unit tensor. And so, this in index notation would be expressed as p delta ij

ei ej because the diodes are used for indicating and so, in index notation really we would

just if this term is there p delta ij that implies that we are talking about nine components

because,  i  and  j  both  can  take  values  of  1  2  3,  but  we  are  only  talking  about  the

components where delta ij is 1 having that value minus delta p so, basically for when i is

equal to 1 and j is equal to i or similarly i is equal to 1 j is equal to and so, on.

For these values we will get component p and for all other values of i and j we will get 0.

So, basically this is as expected what we are expressing here is this in matrix notation,

this  is  how we  would  explain.  So,  therefore,  we  have  a  unit  tensor  which  is  being

multiplied. So, in simply the unit tensor in index notation is this using kronecker delta 

So, now what we will  do is look at the next operation addition and subtraction of 2

tensors is again can be expressed. So, if we have let us say sigma minus tau and mind

you actually if this sigma is the total  stress, and tau is the deviatoric stress then this

difference is nothing, but minus p times i, but in index notation.

This can be written as sigma mn minus tau mn, and we are keeping the same index here

because we know that when sigma 1 1 has to be subtracted from tau 1 1. So, therefore,



whenever we see term like this we know this is a tensorial equation with 9 components

and both m and n have to go from 1 2 3.

So,  in  such  cases  it  is  completely  incorrect  to  write  this,  because  when  we  write

something like this mn and i and j can take independent values and therefore, this is not

really permitted. So, we could also write the same thing this as sigma ij minus tau ij. So,

these 2 are completely equivalentand, just to remind you that is why we call these indices

mn i and j as dummy indices. So, that is as far as addition or subtraction of 2 tensors is

concerned.

Now, let us look at scalar or a double dot product of 2 tensors such operations are fairly

important in rheology for example, when we look at viscous dissipation.
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Because of viscous nature of complex materials whenever we impose deformation rate or

a strain rate on the material viscous dissipation is actually nothing, but stress into strain

rates.

And clearly these are tensor quantities while this is a energy measure. So, therefore, it is

a scalar. So, the double dot product of stress and strain rates will actually give us viscous

dissipation which is a scalar. Similarly the strain energy which is again a scalar and this

is related to stress, and strain stress multiplied by strain and for 1 dimensional situation



of course, both of these just multiply each other, but we know in general that they are

tensor quantities.

So,  therefore,  again  the  double  dot  product  of  stress  and strain  will  give  this  strain

energy. So, let us just look at that if stress is denoted by sigma and strain by E, then we

are  interested  in  finding  out  the  strain  energy  which  is  defined  as  this  in  boldface

notation. So, how is this represented in index notation? So, again we can use what we

have been doing represent sigma as in index notation, and then this is double dot product

with e and this is with e m, e n. So now, given that there are 2 dot products what we have

is a dot product between these 2 and a dot product between these 2.

So, we know that e dot q dot e dot m is going to be delta q m, and similarly e dot p dot e

dot n is going to be delta p n. So, therefore, we can write this result as sigma p q E mn

delta qm and delta pn, and clearly because of this kronecker delta q and m have to have

the same value. And similarly p and n have to have the same value therefore, this can be

written as sigma pq, E qp alternately we could also write this as sigma nm into E mn and.

So, you can see that this is a scalar quantity and both n and m are repeated or p and q are

repeated so, this is a sum and just to write it out the to make ourselves familiar. 
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Since both p and q or m and n they vary from 1 to 3, what we are ah writing here is

sigma double dot e is actually equal to sigma 1 1 E 1 1 plus sigma 1 2 E 2 1 plus sigma 1

3 E 3 1 plus sigma 2 1 E 1 2 and so, on. So, you can see that there are going to be 9 such



terms which will sum and give us the result which is the scalar product. So, this is called

scalar product of 2 tensor or it is also called the double dot product. So, that is another

operation which is useful whenever 2 tensors are involved and the resulting quantity is a

scalar quantity. Now let us look at the dot product of a tensor, and a vector and again this

is very important, when we have to talk about contact forces in continuum mechanics. 

(Refer Slide Time: 10:17)

The contact forces which are forces acting on a surface it is between in a in a material if

we have a hypothetical surface, and the 2 parts of the material will exchange this contact

force. So, each contact force is associated since it is a force it is a direction, but it is also

acts on a surface. So, any such surface we will have the contact force t,  and then of

course, at that point the surface unit normal is n so, to find out this t we actually need to

know the stress tensor. 

And therefore, a single dot product of the tensor and a vector gives us another vector. So,

given that in our course we are dealing with mostly fluids which have no polar ordering.

And therefore, we have seen that sigma is equal to sigma t or in index notation we can

write this as sigma mn equal to sigma nm. So, let us look at the dot product of the stress

tensor with a unit normal vector and again we can write this in index notation as sigma ij

e i e j. So, again we are present and then this is multiplying with so, as we can see these 2

will undergo the dot product, and therefore we know that e dot dot e k can be represented

as delta jk therefore, this result can be written as sigma ij into nk into delta jk into ei .



So, what we have therefore, in effect is a vector quantity just away a unit normal vector

was represented using 1 set of base vectors tensor, was represented using a diode we

have the overall resultant of a tensor a product with this vector as a vector quantity. And

we can use now the property of kronecker delta to say that j and k have to be identical.

So, therefore, this could be written as nj ei. 

So, many times what we will do is we will not be writing this kind of the notation to

indicate  the base vector  so,  we will  just  indicate  this  as  sigma ij  nj,  given that  j  is

repeated this implies that each i-th component, i implies the component and therefore,

this is a vector quantity and j implies summation .

So, just as an exercise to think about if we have let us say a product like this what are we

implying here m is the component. So, both this is also a vector. So, therefore, we have

m-th component of the 2 vectors and this is simple vector addition though m curve first

component will be summed with another first component and so, on. And since there are

n is repeated in this n will be actually summed over. 

And so, if i were to write let us say the second component of this equation what I am, I

am saying is m is equal to 2. 

(Refer Slide Time: 14:10)

So, therefore, then what I need to write is a 2 n v n plus a 2, and since this is n is repeated

the complete writing of this would be A to 1 V 1 plus A 2 to V 2 plus A 2 3 V 3 plus A 2.



So, therefore, this is a whole 1st vector this is the 2nd vector, and this is what is the

advantage with index notation you can see that these 3rd 3 V terms are written very

compact way using this. And since we know the notation framework we know that since

n is repeated it has to be summed over and we are talking about m-th component of this

tensor of this vector. So, now we have looked at ah operations which are related to the

getting a scalar from 2 tensors, and then getting a vector from a product of tensor and a

vector the last product that we will see is where the 2 tensors are involved. 
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So, if we have let us say 2 tensors A dot B then the resultant is a tensor again, and again

we can write this as A pq e p e q and dotted with B mn or let us just use ij, because I have

kept on highlighting that these are dummy indices and we could use any possible indices.

And so, again like in the earlier case there is only 1 dot product, and these 2 would be

involve and if we are getting familiar with this then we can quickly see that q and I have

to be same because this dot product is nothing, but delta qi. And therefore, I can directly

write this as A pq B q j e p e j. 

In fact, I need not write the 2 unit vectors also because I know by looking at this quantity

that q is repeated. So, there is sum over it sum over q, and we are talking when I write

this this is a pj component. So, if I am interested in let us say this A equal to B is a tensor

m and let us say I am interested in writing down M 3 2 and clearly the pj component is

what we have written here. So, by this we imply that p is equal to 3 and j is equal to 2.



So, using this I can write M 3 2 is equal to A 3 q B q 2. And since q summation is

involved this will completely write as A 3 1 B 1 2 plus A 3 2 B 2 2 plus A 3 3 B 3 2. So,

again a sum like this is compactly written using the index notation. 

So, what we have seen is any of these operations when we discuss in rheology many of

these quantities we will be using, and at that point we will pay more attention to the

physical significance of these quantities, but it will be handy in it will be very useful for

us if we are able to quickly see the correspondence between the index, and the boldface

notation. And for any work in this area this is 1 of the skills that is very essential in terms

of doing manipulations of equations and simplifying governing equations. So, the next

set of operations that we will summarize are related to derivative operations, because all

the things we have seen. 

So, far are additive or dot products and cross products and so, each of these have very

important physical significance and of course, in rheology we will also have time as well

as space derivatives . So, what we will do is quickly look at some of the derivatives and

operations which are related to that how we will use them. 
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For example,  let  us say time derivatives  are relatively easy to talk about in terms of

induction notation. If we have let us say quantity sigma, which is the stress tensor let us

say and we are interested in stress derivative with time partial stress. So, that of course,

in boldface notation we will write as del sigma by del t, and clearly this is a tensor form



because each and every term of sigma is going to get the partial derivative. So, what we

imply here is if there is a sigma 2 2, and we are writing del by del t we basically have if

let us say all the other terms are 0, then this implies that there is only 1 component which

is nonzero which is del sigma 2 2 by del t. If all the nine components are nonzero then

we will have nine such derivative. So, therefore, in boldface notation we write it like this

and in a index notation again it is simply written as del sigma ij by del t . So, as soon as

we see 2 indices and our partial derivative of this we know that this is a tensor equation,

which means that there are 9 components of this equation. 

The deviatoric stress that we talked about for example, is indicated by tau it is derivative

in index notation will be del tau ij by del t. And the Maxwell model that we will discuss

quite a lot is nothing, but tau ij plus lambda times delta ij by del t is equal to eta times

gamma dot ij. So, we can see that this is 3 dimensional Maxwell model, because there

are nine components  of stress 9 components of strain rate,  and 9 components  of the

derivative. And of course, if we were to write let us say the simple shear; in simple shear,

what we will see quite often is only the off diagonal elements will be nonzero, and in

simple shear only 1 of those of diagonal elements will be nonzero. 

And for the time being let us say that i is equal to 1 and j is equal to 2, or j is equal to 1

and i is equal to 2, because of symmetry both of these will be same. And so, then in that

case the equation will reduce to lambda del tau 1 2 by del t is equal to eta gamma dot 1 2.

So, therefore, in index notation when we write we imply the 9 and quite often for a

simple situation when there is only 1 or 2 components nonzero then we will write them

in more detail. So, as I have said earlier we will indicate the boldface notation like this,

we will indicate the index notation, and if we want to solve then this is the complete

equation.

So, just  to  complete  the picture let  me also maybe just  write  the Maxwell  model  in

boldface notation itself. So, that will be del tau by del t is equal to eta gamma dot or

more correctly, because gamma dot is related to in our course the strain tensor as d. So,

therefore, we can this is the boldface notation this is the boldface.

So, now let us look at some of the other operations because with time derivatives it is

relatively  simple  because  time  itself  is  a  scalar,  we  have  other  spatial  operators  for



example, gradients and divergences. So, here we have the first quantity which is gradient

of a scalar. 
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So, in this case let us say rho is a scalar and it is gradient is written as gradient of rho in

boldface notation. This is a boldface notation because we know this is a vector quantity.

So, using index notation we write this as del rho by del x i, we write x i in rectangular

coordinate this will be xyz. Similarly it will be r theta z in cylindrical coordinates and so,

on. 

So, generally we are saying that these are the 3 coordinates for our 3 dimensional space.

So, to write this more generically we write x 1 x 2 and x 3 implying the 3 different

direction. So, therefore, a position vector will be nothing, but let us say x m when we

write x m we imply this is a position vector and of course, we know that this is equal to x

1 e 1 plus x 2 e 2 plus x 3 e 3 .

So,  therefore,  this  is  used  the  position  vector  and  the  derivatives  with  respect  to

coordinates we use the symbol x i. And so, whenever we write del rho i by del x i this is

a vector quantity and it is the gradient of rho. And in this notation it is clear that this

when we write, we are saying del rho by del x 1 e 1 plus del rho by del x 2 e 2 plus del

rho by del x 3 e 3. And now I hope you can see that what we mean when we say that in

index notation we are only trying to indicate Cartesian coordinates, because if this were

to be a cylindrical coordinate system then we will have terms like this, where it is 1 over



del rho by del theta e theta. So, there will be terms like this which are not really being

represented  in  index  notation.  So,  they  do  not  really  come  in  index  notation  and

therefore, the index notation is predominantly is only for the Cartesian coordinates.

So, the way we imply and understand the index notation is not that it is only valid for the

only valid for Cartesian coordinate, but we understand how it is written for example, if

you  have  a  heat  flux  vector  which  is  written  as  conductivity  time’s  gradient  of

temperature.  So,  this  is  the  boldface  notation  and  of  course,  it  does  not  have  any

reference to any the specific coordinate system, but now if I were to write this in index

notation what I will write is q k is equal to minus k del t by del x k. 

Since I use conductivity also as k maybe that is not the best choice for index and so, as it

is a dummy index I can use any other so, let me use i. So, q i is minus k del t by del x i.

So, as soon as we write this we can see that the terms which are similar to what we had

said in terms of cylindrical coordinates are not included.

But as soon as I see this  kind of an equation which is including an index notation I

should immediately think that this is corresponding to this boldface notation. So, when I

expand this in cylindrical coordinates I should automatically write the overall governing

equation correctly.
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So, if I see this equation for example, in terms of as I said q i is equal to minus k delta t

by del x I, when I write this for cylindrical coordinates i first have to understand that this

is  gradient  of  t.  And  then  I  have  to  apply  the  cylindrical  coordinate  or  any  other

curvilinear coordinate gradient operator. And that is why the index notation is only a

notation  to  write  down  equation  in  a  compact  fashion,  it  is  not  because  Cartesian

coordinates are simple we are using Cartesian coordinate as in index notation, but it does

not  imply  that  the  equations  written  in  index notation  are  only  useful  for  Cartesian

coordinates only . So, now, let us go down and look at the other operation for example,

divergence  of  velocity  this  is  something  which  will  be  very  useful  in  most  of  fluid

mechanical calculations. 

And of course, we also know that this is 0 for incompressible fluid, and again we know

that this quantity is a scalar. And just to again go through the operation what we have is

del x i e i and dotted with V k e k, and again because of the dot product between i and k

we know that we can use Kronecker delta to imply del i k. 

And since I and k have to be same we can write this as del V by del x k or alternately del

V I by del x i . So, anytime in a governing equation I see a term like del V m by del x m I

should be able to immediately say that this is nothing, but divergence of velocity because

both of these repeated, again we know that overall this quantity is going to be del x 1

plus del V 2 by del x 2 plus del V 3 by del x 3. So, this is as far as the divergence of

velocity is concerned for the course on rheology the gradient of velocity will be very

important. 
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And here there is a possibility of multiple interpretations or multiple notations. So, in our

course we will follow this particular notation to indicate the velocity gradient. In other

notations alternately it is also possible to write this as del V j by del x i implying and in

this particular course we will not use this, we will only use this definition. And so, the

final operation which is very useful in case of linear momentum balance is divergence of

sigma and so, here for example, again del a del by del x k of e k dotted with sigma mn e

m e n, and again I will do this quickly hoping that some of you are now getting familiar

with what we are trying to do. 

So, k nm have to be the same so, therefore, this can be immediately written as del x k

sigma k n. And since k is being repeated there is a sum over it and this is the vector, it is

a vector because n is the only quantity which is operational here.

So, therefore, n-,th component a of the divergence of stress will be involved in the n-th

component  of  linear  momentum balance.  And so,  with  this  we have  now looked  at

several  operations in the first  lecture we try to get a familiarity  with the concept  of

tensors, in the second lecture we looked at some of the operations which involved scalars

and vectors. And in this lecture we looked at operations which involve tensors and other

quantities as well as some of the important time and space derivatives. 

So,  with this  now we have the overall  machinery to indicate  any to write  down any

governing equation which is involved in rheological analysis.


