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Lecture - 15
Viscous response

In the previous lectures we become familiar with kinetic as well as kinematic measures

quantities such as stress, strain rate, strain. And we also spend some time talking about

the rheumatic flows which are useful in the analysis of rheological response and so now,

we are in a position to start discussing how do the complex materials respond, what are

the  different  types  of  responses  that  complex  materials  exhibit.  And  as  part  of  this

discussion on various types of responses we will begin with viscous response and how

we will do this is initially we will look at some of the introductory concepts and then

quickly review the Newtonian fluid which is the most common viscous fluid that me

know and to quantify the viscous response of complex materials we will define some

material functions.
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And finally, we will end up discussing non-linear viscous fluid response by looking at

some of the mechanisms which lead to the non-linear viscous response as well as some

of the models which are useful in describing the viscous response.
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So, let us begin by looking at the overall framework in which we will do this. Since we

are interested in looking at the response of complex materials we will first find it helpful

to look at them as different types of classes and describe them using qualitatively. So,

therefore,  we  will  use  terms  like  viscous  viscoelastic  thixotropic  and  yield  stress

material. So, of course, this lecture we will discuss viscous and in subsequent lectures we

will discuss other class of material response.

Once we do this it becomes easier for us to identify what are the key features of each and

every type of response and if a new material is being investigated whether it belongs to

one of these different  classes  or  does  it  showed responses which  can be in  multiple

classes  is  type  of  analysis  that  we can  do.  To help  understand better  the  qualitative

descriptions we need to quantify the response and there that is where material functions

become  very  useful.  Material  functions  are  defined  based  on  measurement  under

controlled conditions for example,  constant stress or constant strain or constant strain

rate and also simple shear flow or uniaxial extension. So, these are all what I what is

meant by controlled conditions.

So,  we  measure  the  properties  under  these  control  conditions  and  the  properties  or

quantified in terms of material functions. So, for example, viscosity which we know as a

material constant for Newtonian fluid in today’s lecture we will see is actually material

function which characterizes the overall viscous response of a material. Similarly later on



we will define material function such a storage modulus extensional viscosity and so on.

Additionally if further need of quantification is there in terms of having suitable models

because these models are phenomenological they will incorporate terms which give us

physical insights about how the response of complex materialises. So, it is important for

us to not only define material functions and quantify the response we should see whether

by adequate representation of the response in by mathematical means can we capture the

behaviour which is described the material  functions. And to this end we will  look at

some simple models so that we can go back and forth between the response the material

function and the model. 

So, today for example, will look at Carreau Yasuda model sometime in future we will

look at different models which all correspond to different classes of material response.
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So, now let us summarise viscous response. We have seen this multiple times before that

current state of stress and current state of strain rate is what defines viscous response. So,

the past deformation is of no relevance. Similarly the amount of deformation in terms of

the strain is not really relevant what is only important is what is the current stress in the

material and current strain rate and both of these are related to each other and therefore,

the  viscous  response  is  completely  dissipative  response.  So,  these  are  the  basic

description which we have already discussed several times in the course before. And

mathematical model constitutive model which captures this for a class of fluids is called



Newtonian fluid, in which we are very familiar with in which case the total stress tensor

is the pressure and deviatory stress tensor and its deviatory stress which is related to the

velocity gradient as we discussed earlier.

(Refer Slide Time: 05:08)

And the proportionality constant is viscosity, and depending on the type of flow one or

more  of  these  velocity  gradient  strain  rate  tenses  components  will  be  non-zero  and

therefore, the components of deviatory stress as well as components of stress will be zero

or non-zero. So, this equation for Newtonian fluid which is incompressible is used very

heavily in fluid mechanics and is an example of viscous response.

Let us look at what are the main features that the Newtonian fluid has. So, in Newtonian

fluid  in  simple  shear  basically  let  us  look at  the  rotational  parallel  plate  and just  to

remind you we have basically a top plate and a bottom plate.
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And the top plate is being rotated and the fluid is kept in between and, since we have this

simple shear flow we have velocity in theta direction and it is only a function of z. So,

therefore, the only component of velocity gradient which will be most relevant in this

case is del v is theta by del z and that is what we have stated here.

(Refer Slide Time: 06:13)

The fact  that  the total  stress  tensor  for  a  Newtonian  fluid  will  be  pressure which  is

uniform everywhere and then the viscosity times the velocity gradient. So, the del v z by



del theta term which is the other part of the strain rate tensor that is zero since we do not

really have a velocity in z direction.

So, del v z by del theta this kind of term is actually zero. So, only this is the non-zero

term. And so, in the sigma z theta there for which is this component plus this component

and this component plus this component is related to basically the velocity gradient times

the viscosity and we will represent it using this symbol gamma dot. So, that implies the

strain rate in this case and this is the usual learning that we do in our earlier courses that

stress is proportional to strain rate and proportionality constant is viscosity. And quite

often  of  course,  since  we  are  discussing  simple  shear  we  will  say  shear  stress  is

proportional to shear rate and the proportionality constant is this viscosity and sometimes

the therefore, this is also referred to as the shear viscosity. But it should be clear to us

that even the normal stress components are related to normal strain rate components to

the same coefficient mu. So, therefore, it is the viscosity which captures the Newtonian

fluid response in any type of flow be it shear be it extension or be it any combination of

shear an extension.

So,  broadly  when  we have  this  kind  of  a  Newtonian  model  we can  summarise  the

features like this for simple shear flow there is only one shear component of strain rate

tensor D which is non-zero.
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So, as we saw in the previous slide there is only one component this is of course, always

a symmetric tensor. So, there are 3 plus 3, 6 components which are of relevance. So,

therefore, only one component in this case z theta or theta z which is non-zero. So, only

one corresponding shear component of tau or sigma is also non-zero. So, the stresses also

we find similarly tau z theta or theta z or sigma z theta or sigma theta z non-zero.

Now, in  there  are  two  situations  and  these  also  we  have  discussed.  So,  I  will  only

summarise them here quickly that if a constant stress is applied a steady state is reached

and this is reached instantaneously because if you look at the governing equation as soon

as we apply your constant strain rate the stress has to be also become constant. If this is

the function of time this will be a similar function of time, if this is increasing this will

also be increasing with time, if this is zero this will also be zero. So, there for as soon as

this is constant both stresses will also become constant and therefore, in this case we

have a constant rate of dissipation because stress is constant and strain rate is constant.

The other type of experiment is where if we have a constant strain rate applied then again

steady state is reached quickly and instantaneously we have constant stress is observed.

So, there therefore, in both cases we reaches steady state and the constant dissipation is

observed. Simple shear flow normal stresses will be zero, as we saw in the previous case

the normal stresses are all zero because normal strain rate components are all zero. So,

therefore, tau rr, tau theta theta, sigma rr, sigma theta theta are all zero.

We will  see this  that  this  is  an important  characteristic  of viscoelastic  fluid.  So,  any

signature of elasticity in a fluid will be based on the normal stress differences which

means in this case normal stress differences are zero because normal stresses themselves

are zero, but for viscoelastic fluids we will see that the stresses will be non-zero and their

differences will be a key indicator of the elasticity of the fluid. For a constant strain the

stress instantaneously decays to zero which is means instantaneous relaxation.

For sinusoidal variation of strain the stress is out of phase with strain. What do we mean

by this? That if you have a strain which is like this. So, if this is the strain, strain rate will

be given by derivative of strain. So, strain rate is nothing, but del by del t of strain which

means it is the time derivative and so wherever the strain was zero we will find that

strain rate is maximum and, if you look at the stress itself stress will be in phase with

strain rate. So, this is the stress. So, therefore, stress and strain rate are in phase while



stress and strain are out of phase. We will see later on that viscoelastic fluids will again

we can characterized them using this kind of a sinusoidal strain and strain rate. For an

elastic solid the situation is exactly opposite the strain rate and stress are in out of phase

and strain and stress are in phase. So, we will discuss this later on when we discuss

viscoelasticity. So, keep this in mind.

So, in a summary what we are saying is sinusoidal variation of strain the stresses out of

phase and the stresses in phase with strain rate and in a uniaxial extension at constant

extension rate a steady state is reached. This is fairly important again from elastic fluids

which are used in making fibres or sheets and so many for plastic materials are used to

make where extensional flow is involved and many of those materials actually do not

show a steady state.
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So, what do we mean by that? Steady state is, for example, when we have a constant

shear rate applied or constant strain rate such as gamma dot z theta it is a constant strain

rate being applied what we see is the stress itself is constant for a Newtonian fluid and

similarly when we apply epsilon dot which is also constant and we look at tau zz again as

a function of time we will see that it is a constant value. So, this is what we mean by a

steady state is reached.

What we see in many of the polymer melts used in making films and fibres is at constant

epsilon dot they show responses of stress as increasing. So, therefore, there is no steady



state clearly for Newtonian fluid we have no such feature. So, Newtonian fluid shows a

steady state both in shear as well as extension. And that is what we have summarised

here, saying that in a uniaxial extension constant extension rate a steady state is reached

similarly when a constant strain rate is applied for a simple shear again we reach steady

state.

(Refer Slide Time: 15:19)

Now, we define a material function to quantify a response of material in what is called

steady shear. So, this is called a material function and it will become evident soon as to

why we refer to it as function and not a material constant.

So, constant strain rate will be applied in simple shear and in case of rotational parallel

plate the z theta component is what is non-zero. So, therefore, at time t is equal to zero a

constant strain rate would be applied and this zero is to indicate that it  is a constant

value. And as soon as the constant strain rate is applied we start measuring the stress

based on the torque that is required to rotate the parallel plate and, this stress and torque

will be measured and we will wait till the steady state and when the study state is reached

the value of tau z theta is noted and so constant value of tau z theta divided by the strain

rate  which  was applied  is  called  the  viscosity. So,  this  is  a  material  function  which

describes the response of material at steady shear. So, therefore, we wait for constant

value of stress to be reached.
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Similarly in study extension we have a material function defined called elongation or

extensional viscosity again a constant strain rate in uniaxial extension is applied at time t

is equal to zero we apply a constant strain rate which is in the z direction in epsilon dot.

And while discussing rheumatic flows we have already discussed the type of extension

that can be experienced in uniaxial.

(Refer Slide Time: 17:05)

For  example,  if  you recall  we had discussed  cuboid  of  material  and if  this  is  the  z

direction then we can pull it in this direction and we would expect that after sometime



this material would become longer in z direction and it would shrink in both x and y

direction. So, in x and y direction it will shrink while in z direction it will increase. So,

this is the uniaxial extension.

Of course, in a discussion or in a text book or in a classroom setting we are discussing it

with cubicle fluid which is of course, not practically achievable. How this experiment is

done, is actually you take a cylindrical body of fluid and these two plates are pulled apart

and therefore, this z will actually with time become thinner and thinner and so on. So,

therefore, there is a pull again in z direction and there is going inside in radial direction

and  from this  side  if  you  look  the  cross  section  of  the  fibre  or  filament  keeps  on

changing. So, this is called a filament stretching rheometer. And we will discuss some

aspects related to instrumentation and makeup of such rheometers in a class later on.

So, therefore, we are describing the uniaxial extension using this rectangular coordinates

assuming a cuboid element,  but similar  definition is  valid  whether  it  is  a  cylindrical

filament which is actually done in an experimental scale there again the stresses will be

zz and rr while here we are just talking about zz and x x. So, the normal stresses in these

two direction the subtraction is done so that the pressure which is unknown. So, sigma zz

and sigma xx the pressure will be subtracted and that is the same as tau zz minus tau xx.

So, what we are doing in this case is the fact that there is sigma xx here and sigma zz

here and of course, both of these sigma zz will be equal to minus p plus tau zz and sigma

xx will be equal to minus p plus tau xx and what we are really interested in knowing is

the stress difference between these two because this is anyway an unknown quantity. So,

therefore,  we define the extensional viscosity in terms of a stress difference which is

what is written here. And it can be shown that if you look at the overall velocity profile if

you recall in such an extensional flow we had written earlier that the extensional the

strain rate is given by minus epsilon dot 0 0, 0 minus half epsilon dot 0, 0 0 epsilon dot.
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So, therefore, we have all three components tau zz, tau xx and tau y y are not 0 and we

can manipulate algebraically and using boundary conditions we can actually  find out

what is the viscosity based on our equation. The boundary condition will be that at these

surfaces pressure is given by atmospheric pressure. So, using this we can solve and get

the result that the extensional viscosity for a Newtonian fluid is three times the viscosity

that we defined earlier. So, this is also called the Trouton viscosity, the Trouton ratio is

there for 3 and this is something which is discussed once in a while in literature where

we talk about the Trouton ratio which is nothing, but eta e by mu or eta e by eta and it is

equal to 3.

We will see that we will be using symbol mu as well as eta mu is generally used for

Newtonian fluid and eta we will use for all other viscous response. So, whenever we use

mu we will indicate by that it is a material constant and therefore, it is constant for a met

it is only a function of temperature. So, given these two material functions that we have

define  one  for  steady shear  and steady extension  we just  again  remind ourselves  of

overall features of Newtonian fluids that they we reach a steady state in steady shear and

extension the normal stresses of components are zero and also the in case of a constants

strain there is an instantaneous decay.
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And why we repeated these is to highlight to you that in fact, these are exactly the same

features which are valet for all classes of viscous fluids also. So, if you take any other

viscous fluid also the response these features that we talked about are entirely identical.

So, in the sense for any viscous fluid also we will reach study states when a constant

stress and strain rate is applied the normal stress will be zero for simple shear flow, for a

constant  strain  the  stress  decays  to  zero  which  means  this  is  perfectly  dissipative

response and for sinusoidal variation of strain the stresses out of phase with strain or

stress is in phase with strain rate, stress strain rate are in phase and. So, if you look at the

overall  features  of  Newtonian  fluid  and  features  of  viscous  fluids  they  are  entirely

identical then what is the difference.
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And that is what gives us an idea to describe what are called non-linear viscous fluids or

generalized Newtonian fluids. So, they are called generalize Newtonian because as we

saw many features of Newtonian fluids are sheared by these fluids. And they are called

non-linear viscous fluids because unlike Newtonian fluid which is a linear viscous fluid

these have non-linear relations between stress and strain rate.

So, summarise again linear viscous fluid which is also Newtonian fluid stress is directly

proportional to strain rate they are linearly related to each other therefore, linear viscous

fluid. The study shear viscosity mu is a material constant in fact, it is only a function of

temperature and of course, pressure depending on if pressure differences are very high.

In  this  course  we  are  mostly  concentrating  on  incompressible  fluid.  So,  pressure

dependence  does  not  really  arise;  however,  temperature  dependence  is  viscosity  is  a

fairly strong function. Many of the situations in this course we will discuss isothermal

situation so therefore, again we will find viscosity to be a constant.

We also saw that extension viscosity is three times mu are the trouton ratio is 3 and again

it is a material constant. For a non-linear viscous fluid or generalize Newtonian fluid

again stress is a function of strain rate. So, like we describe for Newtonian fluid current

state of stress and current state of strain rate only relevant. And only thing is instead of

being related to each other through a linear relationship there is a very rich variety of

behaviour shown by all types of complex materials, whether we look at ketchup as a



material whether we look at any other sauces which we use in the kitchen whether we

look at  shampoos  or  any other  personal  care  products,  whether  we look at  polymer

solutions which are used in enhanced oil recovery all of these show fairly different types

of behaviour and so challenge in terms of generalized Newtonian fluid and non-linear

viscous response is to try to capture the correct response that is shown by a real fluid.

The study shear viscosity is a material function because it is a function of the strain rate.

Since stress is a function of strain rate we actually have the viscosity itself also which is

the ratio of the stress and strain rate becomes a function of strain rate. And very much

like Newtonian fluid the extensional viscosities still three times the viscosity; however,

since this itself is a function of strain rate we will see a similar function for extensional

viscosity also. So, if you see the difference between these two the overall dissipative

response or the general viscous nature of it is completely similar and exactly the same. In

fact, however, the only big difference is in terms of the relationship between stress and

strain rate.
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Now, let  us  look at  what  we already saw in the  first  class  as to  what  happens to  a

colloidal  dispersion  under  shear.  So,  for  example  the  microstructure  at  rest  would

incorporate many of these particles agglomerated with each other and forming a network.

So, when this network is disturbed at low shear rates since there are very large clusters

the high viscosity is experienced.  But if  we apply a shear rate and that shear rate is



reasonably  high  then  what  that  leads  to  is  these  particles  move  at  different  relative

velocities and the particle interaction in terms of attraction can be overcome due to the

shear field and therefore, the large clusters can actually now breakup into smaller clusters

and therefore, the viscosity can be lower. So, this is what we mean when we say here that

study shear  viscosity  is  a  material  function  and it  is  a  function  of  strain  rate  of  the

material.

So, in this particular case we saw that we are not saying that the viscosity would be

lower when you increase the strain rate.
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We can look at another example of how viscosity may vary due to shear and that is given

by let us say dispersion of rod like particles. So, these rod like particles are oriented

randomly and so when we have a microstructure at rest basically there is an interlock

structure because all of these particles are impinging on each other and they basically

block each other’s motion. We should keep in mind that of course, there is some degree

of  thermal  motion  available.  So,  each  of  these  particles  overtime  maybe  a  rotating,

maybe vibrating moving about slowly, but in general if you look at there is no large scale

motion because of this interlock structure.

Now, as soon as this kind of dispersion with these long particles is shear is applied what

happens  is  there  is  an  alignment.  So,  these  aligned particles  if  you see  here  in  this

drawing most of the particles are depicted to have align in the direction of the shear.



Now, clearly because the no longer interlocking structure is there and in general particles

will move easily because they are not interlocked with each other the apparent viscosity

or the viscosity as a material function when we calculate the force required for this or the

stress  required  for  this  arrangement  will  be  much less.  So,  it  is  easier  to  shear  this

material when compared to this and so therefore, in effect we will have a low viscosity

which will be experienced.

Now,  both  of  these  things  one  key  feature  that  we  must  remember  is  there  is  a

microstructure at rest and then there is a microstructure under flow and clearly there is an

indication of recovery in this kind of structures. So, for example, if I stop this flow the

particles would again start getting agglomerated and they would again form a cluster and

therefore, material will come back to this. Similarly in these case also as soon as we stop

the flow the particles again would start getting randomly oriented and they would again

get interlocked. So, even though we are focusing on only viscosity and only looking at a

steady state picture we should remember that the underlying mechanism may have some

aspects of elastic or recovery features.

So, with this we will stop this lecture and in the next lecture we will look at another

example related to polymer solution and we will also look at a model which can capture

some of the viscous response that we have discussed so far.


