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Kinematics for simple flows

So,  therefore,  in  the  last  class  we saw that  how qualitatively  simple  shear  flow uniaxial

extension or biaxial extension can be described and visualise qualitatively. 

(Refer Slide Time: 00:28)

Now we will try to describe it quantitatively and the description is based on the flow that

velocity is basically given as only in x direction and both v y and v z are 0 and of course, the

velocity  gradient  exists  and  that  is  nothing,  but  gamma  dot  y  x.  And  we  can  define

deformation measure which is can be indicated using a symbol e y x or gamma y x.

Now, again in our course we will use e as a symbol for talking about strain and also the strain

which is infinitesimal strain tensor. So, e is infinitesimal strain tensor. 
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So, as the name suggest this is valid for small deformations, in solid mechanics generally this

is indicated as epsilon when it is tension or compression it is indicated as gamma when it is

shear. Again this epsilon and gamma and all are commonly used terms, but when you want to

describe the complete details you must use a tensor. So, which is the strain tensor. So, that is

why we will go back and forth between these symbols which are commonly used symbols,

but the correct and complete term which is the strain tensor itself.

So, that is why given that a material is deforming at this gamma dot y x you could define

deformation which is gamma y x or e y x, which is basically the amount of deformation

which has taken from present to anytime tau. Whenever it is time in the future we will have

strain being positive because the basis is present time when it is in the past then the strain will

be different sign. So, since the basis is present time we can define it like this.

So, now let  us just  look at  how do we describe the position of each and every material

particle.
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So, this is the overall flow and we saw that the velocity is gamma dot y x times y. So, now, let

us try to describe the position of a material particle as a function of tau, because tau is equal

to t  means present right,  but we would like to  find and the position of a  given material

particle at any tau. 

So, we will indicate x tau y tau and z tau as position of a material particle at time tau and of

course, we would like to express it given that we are tracking a material particle that x y and z

is position of the same material particle at what time at tau is equal to t which is a present

time. So, how do we relate this? So, if you take a material particle which is here arbitrarily

right any material particle which is there how do we now describe it is position as a function

of tau. 

So, again conceptually it should be easy for us to say that at present time if the particle is

here, then somewhere in the future when tau is greater than time the particle would be would

have moved right  and similarly if  I  take some time where tau is  less than time then the

particle would have been to the left.

So, now the other thing which I have drawn automatically is the y position of the particle has

not changed at all right because a particle is moving only in x direction and similarly the z

motion  is  not  at  all  described  because  z  nothing changes  it  is  an  infinite  plate  in  the  z

direction. So, therefore, now can we summarise this. So, clearly we can first write down y tau

will remain y and z tau will remain z.
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Now how is x tau related to x what is the velocity of the particle at this point given that it is y

from the bottom plate right it is velocity is given by this. So, what will be the position of red

particle with respect to position of black particle given that this is at tau and this is at t.

So, we can write gamma dot y x into y into tau minus t right will it be tau minus t because

that is the amount of time for which particle has moved at a velocity and this will be x tau

plus does that make sense. 

So, if tau is equal to present time then what happens is this term whole this time goes to 0 and

therefore, x tau is equal to x. So, of course, clearly a tau is equal to t x tau is equal to x y tau

is equal to y and z tau is equal to z and any time in the past tau minus t will be negative and

therefore,  the  x  tau  will  be  x  minus  something  and.  So,  this  way  this  is  the  complete

description of the flow actually. 

So, now, using this we can actually calculate the strain and to calculate strain we usually use

a variable which is called displacement. So, it is again a vector because displacement can

happen in 3 different directions. So, in this case u x x tau minus x, u y y tau minus y, and u z

which is z tau minus z and this is the displacement vector which we will denote using u. So,

clearly of course, u y and u z or 0 and this is not a surprise that material is. In fact, not getting

displaced in y and z direction it is only getting displaced in x direction.



Now, the deformation exists if there is relative displacement 2 material particles which are

next to each other. So, the one which we have drawn as this black and the other particle

which is grey right are they getting relatively displaced with respect to each other yes right,

because in sometime in future this particle would have gone little bit further down and the

other particle would have. In fact, be further to the left, because the top particle is moving

faster while the bottom particle is moving slower. 

So, therefore, there is clearly relative displacement and relative displacement can be used to

measure the and therefore, strain tensor and this is what we had qualitatively discussed also

that strain measure is related to displacement gradient.
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And what is  displacement  of function of u x is  a function of x y z which one u x right

displacement is in x direction, but is it a function of x or is it a function of y or is it a function

of z. It is a function of y right displacement see displacement is function of y because x tau

itself is a function of y right x tau is a function of as we saw it is a function of y. 

So, therefore, u x is a function of y. So, again when we do displacement gradient we will

again see that diagonal terms will be 0 and of diagonal term and only. In fact, x y terms will

be non-zero.  So, this  is  very similar  to the velocity  gradient  terms only thing is velocity

gradient is strain rate while displacement gradient will give us strain.



So, right now we have not defined is formally. So, that we need not do right now we will do

this measurement of definition of strain later on because for most rheological purposes strain

is useful for only solid like materials. So, if we have rubbers if we have materials which are

more solid like then we use strain. Otherwise many other materials we will use strain rate and

the differential form quite often we will see that we will have an integral form of constitutive

relation. 

So, there we may need to use the deformation or strain. So, since we have not defined it we

can again try to see the relationship between the strain and strain rate  by just  intuitively

looking at what is happening in this flow. So, we have the top plate and the bottom plate and

if we take a look at any 2 points which are let us say delta y apart and we would like to know

what is the shear strain right using our older knowledge of basically the amount change in

length divided by original length. 

So, in this case the original length will be in y direction and the displacement is in x direction,

that  is how the angle comes in right the shear is measured using this  angle because this

displacement  is  there and this  is the original.  So,  this  is the displacement  and this  is the

original length measure of original. So, since we know that this particle is moving at some

velocity  and this  other  particle  is  moving at  some other  velocity  we could  write  this  as

velocity at y plus delta y and velocity at this point.

So, it will be let us say v x plus del v y by del x into yes del v x by del y into delta y. So, this

is a velocity and let us say some motion has happened for some amount of time, this minus v

x into del t and divided by del y right this is the measure of shear strain. And if we take delta t

out and take delta t tend to 0 then that will be rate of shear strain or strain rate. 

So, that will be velocity gradient because v x delta t and v x delta t will cancel out. So, we

will have basically v x and v x delta t cancel out and then we can say that del shear strain by

del t is nothing, but del v x by del y. 

So, for our present purposes we will do this there where partial derivative of time itself is

actually given in us velocity gradient. So, the strain rate and strain are related to each other

through a simple, but all this is possible when delta t is very small. All in other words this is

all small deformation for an arbitrary amount of deformation what we will need to do is we

will need to define rate quantities with respect to tau.



So, that is something we will do in future right now we do not need to worry about it, but del

by del tau of a given quantity of quantity of interest this at tau is equal to t will be the rate of

change of quantity.
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So, remember I had said earlier that strain at present time is always 0 right because we are

using the current state as the basis, but this quantity will not be 0 because we are calculating

the quantity in this running time and this is called a convected rate. We are moving along

with the material and evaluating the derivative in the continuing time and if you are interested

in the rate of deformation at present time then we just substitute tau is equal to t we will get

the present time. And so what we will see in fact, is let us say del strain measure del tau at tau

is equal to t will be the strain rate tensor. 



(Refer Slide Time: 15:12)

However, for small deformations is D it is partial derivative itself is fine, just the way in fact,

that is what we showed here this that we showed is partial derivative of shear strain is just

equal to the velocity gradient that is in general not true. We have not discussed this, but in

one of the future classes we will derive first of all we have to define strain right and since we

need it only for more solid like materials we can postpone.

So, lot of discussion in next set of lectures we will only worry about small deformations we

will only look at material deformation which are small. So, in those cases we can use this

relationship where strain and strain rate are. In fact, derivatives of each other and simple

derivatives,  but in general for a complete description we must take the convected rate of

strain to get the strain rate. As a measure of deformation also we should use a strain measure

which is not small e, but it is so there are several names like finger strain tensor, green strain

tensor, so some of these we will  define again there are multiple  options unfortunately or

fortunately.

There are multiple options in which way we can define strain, but all of these strains will

reduce to e as for small deformations. So, this is again point which we can emphasize for

small deformations I think we have said this before, but we will just remind ourselves that all

strain measures will reduce to e. So, in the beginning of the course we will continue to use e.

So, this is what is summarised here that you can write this tau minus t as gamma y x another

variable which is indicative of the strain and therefore, this is what we derive that x tau is x



plus y gamma y x for if any time in the future gamma y x is positive any time in the future tau

minus t is positive. And therefore, gamma y x is positive and therefore, x tau is more than x

which means the fluidal particle has moved to material particle has moved to the right or in

the positive y direction.

(Refer Slide Time: 17:40)

We also did this that we define the shear strain as small incremental amount of time and this

is only valid for small deformation and of course, we will be using e e y x or gamma y x

interchangeably, but all of these are for small deformation and of course, it can be written in

terms of the strain rate tensor also, because these are derivatives with respect to time.
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So, the same thing can be done for uniaxial extensional flow also where we can define again

the position at any time with respect to the present time. So, x tau, y tau, and z tau and how

are they described as a function of x y and z, but before we do that first let us try to describe

what is the flow. So, how do we what is the velocity field just to remind ourselves again this

is floor right.
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So, it  is getting extended in z direction and getting contracted in x and y direction what

components of velocity are non 0 all 3 right and what are they functions of. So, we can see



that the shape completely remains the same which means there is v z, but it is not a function

of x and y. Similarly v x is not a function of y and z and so on. 
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So, in general what we can write is v x is a function of x v y is a function of y and v z is a

function of z and what we also said is we can have this pulled at a constant rate. So, this rate

is constant the rate of pulling in x z direction. So, therefore, we can say del v z by del z is

constant we will denote that using epsilon dot. So, velocity v z is epsilon dot times z what

about v x and v y they will be negative and v x will be minus half epsilon dot x and v y will

be minus half epsilon dot y.

So, which implies that at the centre of the cuboid velocities are all 0 x equal to 0 v x is not

there y is equal to 0 velocity is not there and z also velocity is not 0. Now can you look back

and try to  justify  what  I  had said earlier  that  position will  be changing exponentially  in

extensional  flow. The stretch ratio  we will  define which is  with respect  to position right

epsilon dot is velocity gradient and strain rate down the stretch ratio is defined in terms of

relative  displacement  or  in  terms  of  strain.  In  fact,  that  we  will  do,  but  that  will  be

exponential because v z can be written as del z by del t epsilon dot z. 

So, how does z changed as a function of time log of z will be epsilon dot times time. So,

therefore, this so that is what is described here where lambda x lambda y and lambda z are

the stretch ratios, which are relating to relative position if lambda x lambda y lambda z are

one that implies that there is no deformation this is a stretch ratios. We have multiple symbols



being used we will have a set of problems which you can work with. So, that you can become

familiar  with  some  of  this  notation  because  here  onwards  when  we  start  discussing

rheological properties, we will start specifying epsilon dot is constant epsilon dot is varying

as a function of sine time and so on or gamma y x is constant or gamma dot y x is constant

because our interest will be in studying the material behaviour under those conditions.

So, we have to remember in the back of our minds that how these quantities are related to

each other and conceptually when we say simple shear what is happening to the material so,

that we should be able to understand the material behaviour. 
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Just as a last thing we can stop by looking at this we looked at lubricated squeeze flow what

if now again the same rotational rheometer we use and I take the fluid between the 2 plate

and it is like earlier and again like earlier I squeeze it, but now this is not lubricated squeeze

flow. So, which means there will be no slip at the top and bottom plate and top plate is only

moving in z direction bottom plate is completely stationery. 

So, now what will be the velocity profile in this case one thing is clear is fluid will moved out

in the r direction it is getting squeezed out, but what is being forced is the r velocity on the

top and bottom plate has to be 0 and therefore, you would expect that the velocity is to be

possibly something like this right well this is r direction and this is z direction
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Because you are squeezing fluid and now this is an example of a shear flow see. So, that is

why based on the rheometric  experiment  that  we are doing we first  will  always need to

identify  whether  this  is  a  shear  flow  or  shear  free  flow  or  a  combination.  And  more

importantly we will at times have to understand the fluid mechanics of the flow, under what

condition does it make sense for me to write a velocity profile like this right now we have not

worried about fluid mechanics at all.

So, at least for the first month of the course we will not we will somehow say that somebody

else has done the analysis and made sure that the flow profile is like this,  but there will

always be some squeeze rate, some conditions, some separation, which will ensure that fluid

mechanically the assumptions are correct. For our first section of the course we will assume

that somehow fluid mechanics information is managed in such a way that we achieve a flow

which is well described as a practitioner of rheology we will have to worry about when I am

doing rheology are these conditions being met or not ok.

So, therefore, understanding of fluid mechanics of rheometry is also important, but that we

will look at some time later.
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So,  as  we  have  emphasized  that  fluid  mechanics  of  rheometry  is  very  important  and

assumptions related to the rheometry will have to be satisfied for us to get good rheological

data, which in the next few sets of lectures we will assume that such conditions are met. In

general looking at this slide here we will define what are called material functions and these

material  functions  enable  quantitative  measurement  of  material  response,  because  we are

doing  analysis  of  rheometric  flow correctly  because  we  have  assumed  the  type  of  flow

because the geometry of a flow has been designed appropriately and the variables which have

to  be  controlled  are  being  controlled  perfectly.  So,  based  on  all  these  assumptions  and

achievement of rheometric flows we define and characterize the material function. 

So, in general to do this the instrument will have to be physically manipulated in terms of

controlling some variables and measuring some variables and of course, these variables could

be torque force position or rate of movement. 

So, for example, keeping position fixed would imply that way we will impose a constant

strain if rate of movement is constant then we may have a constant strain rate. So, these are

all the variables which we could measure or control depending on which type of flow and

therefore,  this  combination  of  analysis  of  rheometric  flow and measurement  and control

allows us for estimating and quantifying the material functions we will see that each of these

material functions are called. So, because unlike material constants which was so basically in

case of Newtonian fluid viscosity is the material constant. In case of conducting solid the



conductivity is a property of the material and therefore, it is a material constant, but we will

see in the case of course, on rheology that the material behaviour cannot be described simply

based on a constant, but a material function. 

So, we will see that for example, viscosity is a function of strain rate itself. So, therefore, we

choose  to  call  all  these  characterization  in  in  terms  of  material  function  as  supposed  to

material constants.
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And so in the next slide we have summarised again that in rheometric flows our objective

will be to achieve certain control flow, which could be shear flow or which could be a shear

free  flow.  Of  course,  all  the  assumptions  regarding  fluid  mechanics  in  terms  of  one

dimensional flow narrow gap to ensure that Reynolds numbers are low or the flow is in a

particular manner basically will ensure that we are able to do the quantification of material

functions and in general when we do the rheological analysis we will see that there are 4 or 5

very common ways of looking at and measuring material functions. For example, if we keep

constant strain rate then it is called steady shear and in that case we define something called a

steady viscosity, but  we could  also  keep constant  strain  rate,  but  look at  how the  stress

changes as a function of time .

So, in this case this is not a steady state measurement we look at stress growth. Eventually of

course, the stress will become a constant it may in certain cases not become a constant, but

generally we will expect it to become a constant. So, therefore, stress growth is another type



of measurement we can keeps stress to the constant which is called a creep measurement we

can keep strain constant which is called stress relaxation and of course, we will also see that

an very important part of rheometric analysis is to do oscillatory measurements, in which

case either strain or stress or even strain rate are varied in a sinusoidal manner. 

So,  there  is  an  increase  decrease  based  on  sin  theta  cos  theta  or  another  other  sets  of

sinusoidal functions that we are familiar with in addition to this of course, there are more

complicated deformations such as double step strain or superimposed oscillation; however, in

this course we will not really look at these, but learn all the basics with the very standard set

of rheometric flows which are achieved to define the material functions.

So, in each case for example, with constant strain rate and constant stress we will define

steady viscosity as material function with constant strain rate and growing stress or changing

value of stress we will define a stress growth viscosity. In case of constant stress creep we

will define a creep compliance, in case of constant strain we will define a stress relaxation

modulus,  in  case  of  oscillatory  strain  or  stress  we  will  define  a  complex  modulus  or  a

complex viscosity which implies that we will have an in phase out of phase components of

these modulii  and viscosities and we therefore,  choose to call  this a dynamic modulus or

dynamic viscosity and we will have the real and imaginary or storage and dissipative parts of

these material functions.

So, these are several ways of doing rheology and several material functions that could be

defined based on this. In the next set of lectures we will examine each of them carefully

alongside we will also look at some important models or some very simple models which can

be used to understand the overall response quite easily. So, with that we have reviewed the

basics of material be deformation and fluid flow which is required for us to look at rheometry

of material systems. 


