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So, very quickly let us go through some standard stuff and then come to the most
important question how well does a least square method perform in terms of estimating
parameters? At the moment we have not asked at until now we have not asked that
question. So, now, that you have an optimal estimate you also want to now predict using
this model, the first thing that we always do is when we want to see how good the model

how good a model we have obtain.

We apply the same model on to the same training data set that we have used or it can be
used in a fresh data set this, these equations fair fairly generate.

(Refer Slide Time: 00:52)

Predictions and Residuals
The optimal prediction of v and the asociated resduals ae
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So, given any new phi or the old phi does not matter, the predictions are simple phi times
theta hat. Now | have used a hat earlier when | solving the theoretical least square
problem 1 did not use the hat, this theta hat is an estimate of the true theta least squares
that you would have obtain, had you looked at the entire vector y and the entire matrix
phi ok.



So, y hat is simply phi times theta hat very simple plug in the estimate get your
prediction. It turns out that you can write this y hat as you see in equation 12, you can
write y hat as simple p y; p is a matrix purely constructed from the regresses, what this
tells us is in order to construct a prediction of y | do not need theta, | just need phi, but
we have to go through the problem to arrive at optimal prediction, | do not have to
compute theta necessarily | can directly use the regressor to the regressor that | used for
my estimation remember there is that is very very important; here we are assuming that

we are using the same training data set.

(Refer Slide Time: 02:16)

Suppose let me put it this way suppose | am given a new set of regressor, there is a fresh
data set that | have obtain and there is an old data set from where | have estimated theta.
So, let us actually abbreviated let us call this phi nu as phi n and phi old as just simply
the phi 0. So, this is the one that | have used for estimating theta, this is the one that

perhaps is coming out of it fresh data set.

Now, if | want to predict y on this fresh data set that | have, then the first equation that |
write is phi n times theta hat, but remember theta hat is constructed from phi old which is
your training data, it is like you have as an instructor you have a question bank your
partition them into one for homework and one for exam other one for exam. So, the phi o
comes from your training data set from your homework data set and that is what is used

in construct estimating theta.



Now, you have to be careful here where | am just pointing out that the phi that is being
written there is being written without the subscript, but you have to be careful. Generally
in r what happens is this theta is told. So, none of this is probably not so relevant in
general when you fit a model using | m, the object that is being written stores the
coefficients and then you apply that to a fresh data it simply do this calculation for you,

but there is this there are this equations which bypass the use of theta.

So, you have to be carefully when you are using this at the moment assume that we are
predicting on the training data set itself so that the subscript do not matter. What you can
see is that y hat and epsilon; y hat is being written as p times y and epsilon is written as p

perpendicular y, y is what is this p perpendicular? It is a orthogonal compliment of p.

(Refer Slide Time: 04:54)

Predictions and Residuals
The optimal prediction of y and the associated residuals are

.
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where
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are said to be the projection matrix and its orthogomal complement respectively. The
latter name is due to the fact that

PP = PP <0 (15)

Remember our least square solution is such that epsilons are orthogonal to the regressor,
and you should be able to see that when | take the inner product of epsilon with y hat |
will get 0. So, that is what it is conforming, it is just re affirming what we already known

about the least square solution.

So, these equations that you are seeing are being provided for two reasons: one is to
compute the predictions given a set of observations and the other one is of course,
computing the residuals and to reaffirm the fact that epsilons are indeed orthogonal to the
regressor that is all. So, this p is called the projection matrix and p perpendicular is

simply the orthogonal compliment anyway | mean this is just for information, let us



move on we have talked about pseudo inverse, so | am going to skip. | have also talked
about the equivalence of OLS with method of moments right last time in the last class
when we started off with the theoretical least squares problem, we wrote this equation
that you seen equation 20 sigma X X.

(Refer Slide Time: 06:00)

Equivalence of OLS with MoM

From the projection theorem, it is somewhat evident that the OLS estimate of 0 in the

lingar regression is equivalent to the method of moments estimate

The equivalence comes from the thecretical LS estimator
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where the L stands for covariance matrix

Replacing the theoretical covarfances by the sample versions gives rise to the
sample LS estimator In (11) as well as the MoM estimator,

We had use the symbol x x times theta equals sigma X y.

So, from a method of moments prospective, what is idea and method of moments you
write the theoretical relations between the parameters and the moments and then replace
the theoretical moments with time averages. So, if | were to replace here of course, we
are assuming y and psi to be random, if | were to replace sigma psi psi or x x with its
respective estimate, what would be the respective estimate this (Refer Time: 06:36). So,

this would be sigma psi hat and likewise the cross covariance with this term.

So, this would give me an estimate of the cross covariance then you get method of
moments, but you see method of moments says you can replace it with any other
estimate also; if you replace the theoretical once with these estimates then you recover
the OLS. So, method of moments and OLS give the same solution; however, when we
talked of OLS solution, we did not have to invoke any randomness that part you should
remember whereas, with method of moments right from step one both the regressor and

the data are assume to be random in nature.



So, including a constant term, until now we have not included the intercept so called

intercept term, but it is very easy.

(Refer Slide Time: 07:44)

Including a constant term

A constant term (mtercopt term, of 2 noA-zero mean) can be accommodated in the

regression model by simply appending the regressor with 3 vector of ones a4 seen below
yik| = @ IR0+ 8 = |@lk] | (21)

Interestingly, the LS estimate of the constant term 3 can be obtained sequentially by first
obtaning 0, followed by,

As U~ iy ()

where § and @ are the sample means of yik] and the regressors respectively

All you have to do is you can think of this intercept term as beta suppose the intercept
term is beta, then think of this intercept term as being beta times 1 so that now you are
including one in the regressor matrix, so that is why | have written this equation; if you
look at equation 21 what have we done? We have converted the non zero intercept
problem into a once in the regressors problem, this is a very standard trick that is used in
linear regression where if there is an intercept term all it does is it includes a vector 1 in
the regressor vector and it says there is a new regressor whose value is 1 and finds the

corresponding parameters that is all. So, in additional parameters is estimator.

It turns out interestingly that the optimal estimate of this intercept term is nothing, but y
bar which is the sample mean of the simple average minus the psi transpose theta hat. So,
it is psi bar transpose theta hat sorry; psi bar is the sample means of the regressors. So, it
is a very simple solution when you work out everything it turns out that the optimal
estimate of beta is simply the difference between the sample mean of y and the sample
mean of the regressors times theta hat that is all. So, which means you can effort to
decouple this problem; that means, you can estimate the intercept term later on you do

not have to estimate it simultaneously with the other parameters. Estimate your theta



calculates the time averages of y and the regressors and use equation 22 to get your beta
hat.

So, therefore, most of the least square problems are presented without the intercept term
because you do not have to include that in your least square formulation. In R when you
use | m by default it assumes that you are estimating an intercept term. Now we come to
the practical aspects of this least squares, where we ask two different questions; for the
given model whatever model | have given what kind of fit has been obtain; that means,
how good is the fit for this given model whenever and in fact, this is not the question
only pertaining to least squares, any estimation method any modelling exercise you

should ask two questions.

One how well has the given model explained, two is there any scope for improvement;
both are related, but they are different kind of questions one is telling about the goodness
of the fit obtained by the model and the estimation method and the other is talking about
if there is anything if there is a scope for improvement, if there is if there are further
refinements that are necessary. So, here we are asking the first question how well has the
model explained or predicted the given y?

(Refer Slide Time: 11:02)

Goodness of LS fits

Maving estimated the parameters, we woukd K to assess how good the estimated model
is? Specifically

I How well has the model (of the specified structure) explained (prodictod) the
output? For 3 grven structure and data, the quality of peadiction solely depends oa the
estimation algorithm, W shall focus on ths question it present, beginning with the

popular ¥ measure

2 Is there a meed to refine the chosen model structure? Thas is o broader question,
which requires the use of model diagnostic measures, specfically pertaining to resckal
anplysis The primary tools are cross-comelation of resduals with isputs, vto-corelaton

of resdualy, and cross-validation
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And usually you will come across measures like R square, you must have heard of R
square or adjusted R square; we will just briefly talk about that and come to the second

guestion.



(Refer Slide Time: 11:17)

1Y measure

The R* measure & 3 poodness-of bt index. It gives a bird's eye view of how well the
model has explained the vanatons (n the data, Its definition is based on an important

feature of LS estimation
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So, this R square measures the famous one that is being presented in all linear regression
exercises, is a measure of how much your model has managed to capture the total
variation in y; that means, y is changing because of some reason and you believe it is
primarily because of the regressor, how well has your model now manage to capture that
fluctuation and you can show first of all for the least squares when you use the least
squares method to estimate parameters, what it is essentially doing? This is another

prospective; we have talked about a few other prospective before.

This is another prospective of least square what it is doing essentially is? It is breaking
up the sum squares of y k minus y bar; for now assume that y bar is zero just for the sake
of discussion y bar is simply the time averages, then what you have on the left hand side
of this equation? Is simply the square two norm of y and what you have on the right hand

side what do you have?
Student :( Refer Time: 12:28).

The squared 2 norms of y hat and epsilons; so essentially what it is doing is its

minimizing this, but what it is doing is it is breaking up.



(Refer Slide Time: 12:41)

Assume Yy bar is 0 it is essentially breaking up in this way, it has to be right because if
you go back to this equation this is not surprising, let me write the equation here and
show you that this is not a big deal because you have already seen this before in a
different form; what we had said is find theta such that epsilons are orthogonal to y hat

that is what least square is doing.

So, when | take here inner product, what is the square two norm of y? It is essentially the
inner product of y vector with itself. So, | have to take inner product of y hat plus epsilon
with y hat plus epsilon and when you do the expansion you will get this result; using the

fact that what is what is the fact that we use?
Student: (Refer Time: 13:35).

So, least squares give you solution as that epsilons is orthogonal to y hat. So, this
breaking up of you can say some square y or you can say square two norm, some people
would call it energy, some other would call it variation whatever you call this is what is
happening by virtue of least squares. Other methods do not necessarily do this, it is based
on this expression that R square measure is derived. The R square measure essentially
looks at what fraction of this variation or energy has gone unexplained by this model and

by least squares remember least squares is doing it.



So, there are two factors playing the roles here in this decomposition, we are doing a
signal decomposition we said earlier, but what we are also doing is a sum square

decomposition have we seen this kind of a relation before?
Student: (Refer Time: 14:38).

Anything else in Fourier analysis, we have talked about signal decomposition followed
by parsevals relation, but their of course, in the parsevals relation we said completely the
sum square in time is preserved by sum square in the frequency, we do not say
decomposition, but your right it is a kind of a Pythagoras theorem, essentially if you look
at this schematic that we have drawn before, you have y, y hat which is optimal

projection and then you have epsilons so you can see here as well.

So, only least squares gives you this kind of a break up and R square measure essentially
is defined based on this, it is sum square prediction by sum square total.

(Refer Slide Time: 15:25)

H* measure .+, contd,
The total vanance of the output is broken up to two additive terms « the vanance
explained by the model and the vaclance of the residuals

Coefficient of determination H*
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That means the square 2 norm of y hat by square 2 norm of y. Higher the R square better
is the fit all right. So, ideally people want R square 1. In fact, getting R square 1 is not
possible because always y will contain something that the regressors cannot explain,
which means epsilon is always going to be non zero. But how much we have missed out
is given by R square and because see the other point that you should remember is this R

square measured that we are defining, can be defined for other estimators as well; | may



am +use m | e, | mayam-+ use some other method does not matter. | can always define R
square, but only when 1 use R square with least squares, | can guarantee that R square
will be between 0 and 1 why is that?

Student: (Refer Time: 16:29).

Correct because of this property that least square enjoys, only least squares guarantees
that y hat.

(Refer Slide Time: 16:41)
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This sum square at the square two norm of y hat is less than or equal to the sum square
two norm of y and R square is simply a ratio of that right. So, straight away you can see
it is always going to be between 0 and 1. So, if you try to compute R square which you
can for some other method, for the same model if you use some other method, it is
possible that R square can be greater than 1; do not panic, but then that means, it is not a
good measure to use all right.

Now, but there is a problem with R square high values of R square indicate good fits
very good, but it does not tell you whether the model is having fixed, that is whether the
model has been over parameterized. If you have burden it with too many parameters then
there is an issue, why | say this why do | why do you think R square cannot detect what
happens if you over parameterized?

Student :( Refer Time: 17:57).



What becomes very R square? Because you want R square high and high you want very
good fits. So, you keep increasing the number of regressors in you are model; obviously,
| mean numerically as you keep increasing more and more regressor, more and more fits
can be obtained better and better fit can be obtained; that means, you will be shrinking
epsilons. So, R square is being taken close to 1; what we would be forgetting there is that
by including more and more parameters, which will become quite obvious soon we
would be also increasing the error in the estimate of theta, as a result it becomes
unsuitable for use on fresh data sets.

Its cross validation abilities will be poor, it becomes more and more specialised to the
data right it is like may be double or triple PhD seriously if you take the PhD, if you ask
anything outside the area of specialization answer would be measurable (Refer Time:
18:58) are kind of good least square fits on the subject about to be depends all right. So,
that is a problem with R square and it is what with that reason that adjusted R square was

introduced.

(Refer Slide Time: 19:14).

LY

Adjusted i

6. 1" has a poor senstivity with respect to inclusion (or exclusion ) of additional
regrossors, Thus, it cannot be used to determine overfits

1. An adjusted 1* that is based on the mean square,

. SSE/(N=p) . N~I . 3
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s useful for determining overfits, The factors (N = 1) and (N = p) denote the
degrees of freedom associated with the SST and SSE respectively

8. The modified measire can assume negative values uniiie the classical i

9. It measures the balance between prediction bras and the variabdity of estimates

10. In practice, sophsticated measures based on information theory such as AIC and
SIC wp amployed it A v

Adjusted R square is introduced so as to take into account over fitting. So, that the user is

being told that there is a penalty for including more and more parameters.

How is the definition modified? Now the definition is modified such that you do not base
it on sum square errors and sum square total, you take the average. Now you calculate

the sum square error not the sum square error, but what is known as mean square error



how is the mean square error calculated? So, if you look at this equation here we have 1
minus SSE by N minus p in the numerator, why do we have N minus P, why is the mean
square error, how many terms do we have in sum square error? N right, epsilons is an N
by 1 component ideally if | have to calculate the mean square error, | should have simple
said 1 over N sum square error, but we are calculating mean square error by 1 over N as

1 over N minus p why are we doing that any idea?

So, all that we are doing is in going from R square to adjusted R square, we are replacing
the sum square error that we have in equation 24 with mean square error and sum square
total by mean square total. When | am calculating sum square total | have N minus 1 as
the deviser and when | am calculating sorry mean square total 1 am using SST by n
minus 1 and when | am calculating mean square error | am using N minus p why is that?

Remember your sum square total is actually this term here on the left.

(Refer Slide Time: 21:08)
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The R* measure s 3 poodness.of bt index. It gives a bird's eye view of how well the
model has explained the vanations (n the data. Its definition is based on an important

feature of LS estimation
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In calculating y bar when | begin | have n observations, but when | calculate y bar |

have lost one degree of freedom.

So, | have effectively N minus 1 degrees of freedom, we have talked about is degrees of
freedom before. So, the correct way of calculating mean square total is to divide this by
N minus 1. Now you can also explain why we are using N minus p for calculating mean
square error. To begin with | have n observation and n errors, but before | have

computed, before computing those n errors | have estimated p parameters. So, | have lost



p degrees of freedom and therefore, in calculating mean square error we use N minus p
that is a reason why the mean square error and mean square total are calculated with N

minus p and N minus 1 respectively.

(Refer Slide Time: 22:09)
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So, that is how the adjusted R square is all you can see now is the number of parameters
comes into play. As you increase p what happens to R square? R square is independent
of p, R square is in fact, getting better as you increase p, but as you increase p the
denominator in the adjusted R square is coming down as a result of which the adjusted R
square what happens? Decreases because you have 1 minus that; so the adjusted R
square is gives you some compromise between the fit that you have on the test training
data and the performance that you may expect to see on a fresh data, but we have come
across another measured we have talked about another measured that offers is trade of
recall akaike information criteria AIC also does this right. So, today people use AIC with
I m for example, if you want to run | m, if you recall it reports r it reports adjusted R
square, it reports many other things but now hopefully you have an understanding of

what it is.



