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Good morning, what we will do today is we will continue with our discussion on 

consistency and also hopefully wind up the discussion on properties of estimators. So, 

just to give you a quick recap of what we were discussing yesterday is we are looking at 

these properties of estimators and towards the end we started talking about consistency: 

which is a very important property. 
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Essentially this consistency is all about how this sequence of estimates that we construct 

for different sample sizes, how they behave as N goes to infinity, where do they go? 

Ideally we want this sequence to converge to the truth and the truth is denoted by theta 

naught. 

Without knowing the value of truth we are able to establish and we should be able to 

establish the convergence of this sequence and knowing very well that this theta hat is 

actually a random variable, we had to turn to the theory of a convergence of sequences of 

random variables and essentially I said that there are 3 forms of convergence of course, 

there is a 4th one, which I discussed the first which is a point wise convergence. So, in 



total you have at least 4 forms of convergence and then a 5th form of convergence is 

convergence and distribution which we will talk about today as well. 

The first one that we talked about is the point wise convergence and point wise 

convergence to understand point wise convergence or any form of convergence all you 

have to ask is now any form of convergence essentially is asking how close or whether 

this sequence converges to theta naught. If it reaches hits exactly theta naught it is great, 

but if it is within the vicinity of theta naught also that is which is a weaker form of 

convergence.  

Regardless of the form of convergence what we are actually looking at is for different 

possible sequences. What we mean by different possible sequences? Imagine that this is 

your experimental space and denoted by big omega that is every point in omega 

corresponds to an experiment let us say. In general we say that this is a sample space of 

all possibilities that is generating some sequence of random variables X 1, X 2 and so on 

of course, we have used lower case n in the theory on convergence, but you should not 

get confused both of both mean the same to us here. So, each point in this sample space 

generates one sequence. So, you can therefore, index this by some omega, unfortunately 

this omega notation coincides with frequency, but then you have to observe a distinction 

here I am just using the conventional notation. 

So, for every point in the sample space a sequence is generated and convergence is all 

about where the sequences are going that is where this rivers are heading are they all 

heading to an ocean or some rivers go some other ocean and some other rivers go to 

another ocean or sea and that is essentially the convergence. The point wise convergence 

demands that for every point for every possible realization, whatever sequence that you 

have all of them should each remember for a fixed value of omega, this sequence is only 

a bunch of numbers, any sequence that we have is a bunch of numbers. 

But the only difference is that there is a controlling factor omega which will determine 

what sequence of numbers you are working with. So, every sequence of numbers is 

going to converge to some number hopefully, if it diverges then that is it you can dismiss 

all forms of convergence; provided that each sequence converges to a number what point 

wise convergence demands is that all each of the sequence when they converge to a 



number, the collection of those converged values should be the possible values for a 

random variable that is all. 

So, if you think that omega 1 is one realization, let say this converges to some converged 

value here right and likewise if I were to generate the sequence for another possible 

realization then assumes that this converges to x of omega 2 and so on. This way I have a 

set of converged values for every possible trigger here there is a switch here and point 

wise convergence demands that every point for every trigger, that the sequence generated 

by every trigger should converge to first of all some finite number and the collection of 

those converged values should be the possible values for a random variable. 

So, that is a very very strong requirement, convergence in probability is a much weaker 

requirement. What it says is essentially that it looks at the definition in the probabilistic 

sense, it says that all this converged values yes they do converge, but they are within the 

vicinity of a random variable, within an epsilon disc of a random variable and the 

probability of finding what the convergence and probability says is there is a possibility 

that a few or more of this converged values do not fall within the possible values for a 

random variable but that probability keeps shrinking as the sample size keeps increasing. 

So, the probability of finding the converged values outside an epsilon radius of a random 

variable keeps going down, eventually it will converge. So, we do not know when it will 

converge; that is what the probabilistic statement says. The mean square convergence 

looks at in a different metric it does not look at probability, it says that distance between 

these converged values and the random variable, those that distance that is in a Euclidian 

squared distance sense, that keeps shrinking to 0 as the sample size goes to infinity. 

Now, that is a stronger statement because as the distance goes to 0 you are confirming 

that it will hit the some random variable that is what we want. So, mean square 

convergence is a more strong statement then convergence and probability. Typically you 

will see that in many estimation exercises, we are looking at mean square convergence, 

but we may actually demand a more stronger form of convergence which is called almost 

sure convergence and we will talk about that, but before we do that let me give you an 

example of mean square convergence, after all of this I will show you how to visualize 

this concepts in R, I will show you some and then the rest you can do on your own, it 

turns out that there is a beautiful package called in R convergence concepts you just have 



to install those and there is a nice tutorial document surrounding that the purpose of the 

package is only to help you understand this different forms of convergence with nice 

simulations. 

I will show you how you can do manually then you can install the package and check 

how you can visualize those concepts using the package. So, let us talk about this 

example here which is concerned with mean square convergence, again we turn to the 

example of a sample mean assume that your computing sample mean. 
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From observations that are uncorrelated and we know that the variance of this sample 

mean is sigma square over n right and what mean square convergence is essentially 

looking at is whether in fact, for this problem the question in hand is whether the sample 

mean converges to the true mean mu? 

Here we have talked about convergence to random variables, but as I mentioned 

yesterday a constant is also a random variable and the reason for talking about this 

convergence of random sequences to random variables is to also help you understand the 

other part where convergence is required, which is where we are looking at linear 

random processes, where we have required that the summation should converge to a 

random variable. So, this theory that we are talking about helps you understand concepts, 

the concept of convergence of a linear random process the model that we have and the 

concept of convergence of parameter estimates. 



In the case of parameter estimates we want the sequence of these parameter estimates to 

converge to a fixed value whereas, in the case of linear random process we want this 

summation that we have for the linear random process if you recall we had the 

summation. 
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This summation should actually converge to a random variable as I keep increasing the 

number of terms right? Imagine that here you are summing up only some N terms and 

you can now construct. So, this is your v k denote this subscript N denotes the number of 

terms you have used in the summation, imagine generating a sequence of a random 

variables there we demanded that this sequence should converge to a random variable. 

So, the he here also you have a sequence here also you have a sequence, but the only 

require difference is we demand that this sequence converge to a random variable 

whereas, we demand that this sequence converge to a fixed value and this problem 

pertains to parameter estimation, we want the sample mean sequence that I am 

constructing from different sample sizes to converge to the truth mu and mean square 

convergence requires that the mean square error, expectation of x n minus mu to the 

whole square is nothing but the x n bar sorry it should not be x n it should be x n bar, 

they or if I have defined x n this big x n itself as what I have done then it is correct. 

So, whatever random variable which we have denoted we have used to denote the sample 

mean, the mean square error of that should go to 0; we know from our prior derivations 



that this mean square error is sigma square over n and as n goes to infinity the mean 

square error goes to 0. What this means is that the sample mean does converge to the 

truth in a mean square error sense? If you are still confused all we are talking about a 

why we is different ways in which the sequence of parameter estimates go and reach the 

truth, some are strong some are weak; the converge and probability is a weak weaker 

requirement, convergence in mean square sense is a stronger requirement and 

convergence in the sense of almost sure convergence is the strongest among the three. 

We have earlier discussed point wise convergence right, almost sure convergence is no 

different from point wise convergence except in one aspect and that it says it recall first 

point wise convergence. Point wise convergence demands that for every possible trigger 

here, whatever sequence that you have all sequences should converge and they should 

converge in such a way that you should be able to define a random variable with those 

outcomes. 

But that is a very strong requirement almost sure convergence relaxes that requirement a 

bit and says it is for some sequences not to converge to a random variable, but it they 

should be for those triggers here which are called 0 probability events. What are 0 

probability events? So, if I ask you if imagine this to be a continuum, then if I ask you 

what is a probability that some random variable here corresponds to some possible 

trigger omega naught that is 0. 

But from a measure theory because probability is a measure from a measure theory view 

point, the probability of the trigger being exactly equal to omega naught is zero; 

however, it does not mean it cannot occur; it can occur. So, this is the big irony and 

anomaly in probability, that is because we are working with measures and measures 

associated with the point are always zero. So, that is why we say 0 probability events 

which means there are events that can occur, but which have a probability of 0; un for 

fortunately this only occurs for a continuum continuous valued random variable, if you 

say the if you turn to discrete valued random variables and it turns out that the 

probability is zero; that means, the event cannot occur. 

So, is this notion of 0 probability evens exists only when the random variable is 

continuous valued and for our parameter estimation sake this trigger here is nothing, but 

your experiment, that trigger that we are talking that is the sample space that is triggering 



your sequence of parameter estimates is simply an experiment. It says, all possible 

sequences the point wise convergence says, all possible sequences for corresponding to 

all possible experiments should converge and they should converge in such a way that 

they constitute the outcomes of a random variable and you can think maybe in the sense 

of if they are corresponding to experimental index. Then there is no issue of almost sure 

convergence, but if it is something else then we have to distinguish between almost sure 

convergence and point wise convergence. 

Let me give you an example. 
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Suppose I my sample space is continuous valued, with 0 and bounded by 0 and 1 and 

both inclusive 0 and 1 are also included as you see from the square brackets. I suppose 

you know the distinction between using the square brackets and using the parenthesis, 

these are closed sets with 0 and 1 included and let us assume that a sequence is 

constructed as I we have given in 43 equation, equation 43 where the sequence assumes 

a value of 1 if the trigger takes a value of 0; if the trigger takes on any other value the 

sequence will take on a value of 1over n right. 

Now, the question is if this sequence converges to a constant valued random variable, the 

constant being zero? So, I define I can define a random variable that is fixed also, only 

difference is that the variance of it is 0 that is. So, what do you think, how do you 

approach this problem? The first step is to see where do all possible sequences converge. 



So, I start with omega 0, where to what value does a sequence converge? 1 very good for 

omega not equal to 0 to what value does it converge? 0. 

Now, the question is whether this sequence now converges in an almost sure sense to this 

random variable that we have defined, what do you think yes or no why? Because there 

is one value one of the converged values for the sequence is 1, but it corresponds to what 

kind of triggers 0 probability events, because it corresponds to a specific value for that 

trigger therefore, we say that this sequence converges to a this random given random 

variable in an almost sure sense, almost sure meaning there are a few trigger points, there 

are a few realizations in the sample space, which do not generate the sequences that do 

not converge, but otherwise more or less it converge otherwise it converges. 

So, all you have to do is in a given problem, if you have to determine almost sure 

convergence, you just have to see where those sequences are converging and you have to 

fig if you are given the random variable then you ask if it is converging to the random 

variable fine and you also have to see for what values of omega the sequence is not 

converging to the random variable and if those values of omega corresponds to 0 

probability events then you can say that this sequence converges yes. 

Student: (Refer Time: 17:54).  

Yeah then for every point it has to converge, that is why I said when samples. 

Student: (Refer Time: 18:01).  

Sorry yeah that is why. So, in that case we do not talk of almost sure convergence you 

take in just assure point wise convergence. This almost sure convergence is introduced to 

exclude to consider these possibilities, to take care of this anomaly of 0 probability 

otherwise no, I mean this sequence is not point wise convergent right it is very clear, 

because there exists a point in omega space which generates the sequence that does not 

converge to x of omega. 

On the other hand I can actually redefine a random variable, suppose I define a new 

random variable such that. 
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I say x of omega converges to 1 if omega is 0 and 0 now does the given sequence 

converge to this random variable in a point wise sense, it does. Almost sure convergence 

requires that if there exists omegas over which the sequence does not converge, those 

omegas should be 0 probability events, it does not demand that they should always exist 

omegas for which the sequence should not converge. So, for discrete valued omega for 

discrete space here the point wise convergence and the almost sure convergence exactly 

match, there it means that there should exist no omega; obviously, for which the 

sequence should not converge. So, it is all about the given random variable. 

So, coming back to parameter estimates here, when we say that the sequence of 

parameters converge to theta naught almost surely sometimes this is written as with 

probability 1. So obviously, the Layman’s question is if it is occurring with probability 

of one why do not you say definitely it converges that is because of this anomaly of 0 

probability events, there are events that occur even if the probability is 0. 

So, mathematicians and statisticians have thought very rigorously for our benefit so that 

we do not have to break our heads on it. So, when we say that a sequence of parameter 

estimates or an estimator produces parameter estimates such that it converges to the truth 

in an almost sure sense, then that is the strongest statement that you are making about the 

convergence. If this is guaranteed then you can show that mean square convergence is 



carry guaranteed which in turn guarantees convergence in probability. So, that is how the 

convergence are hierarchically addressed. 

Generally we look at mean square error convergence, if that is not possible I mean; 

obviously we go in the order, if you cannot guarantee almost sure convergence you turn 

to see if mean square convergence can be guaranteed, consistency can be guaranteed, if 

mean square consistency cannot be guaranteed, at least there should be consistency in the 

probability sense. The sample mean converges in the mean square error sense. 
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So, again the sample mean is an example that we have seen earlier, consistency as I have 

defined as I have said earlier depends on the definition of convergence, if you are 

looking at mean square error consistency then what you are asking is essentially if in the 

limit as a sample size becomes very large or goes to infinity, whether the mean square 

error goes to 0 and the sample mean does and we are able to prove this without knowing 

the value of theta naught. 

How do you do it in practice for complicated estimators unfortunately theory cannot help 

you there, that is where you have to turn to simulations and that is why I am going to 

show you a sample simulation, so that tomorrow if you are working with a complicated 

estimator, a non-linear kind of estimator, it may not be possible for you to prove 

consistency by hand, because they are taking expectations of the resulting expressions 

are going to be very tough. 



So, the second example that we are looking at for in the context of consistency is the 

variance estimator, the bias estimator of the variance sigma square hat and you can show 

that for a Gaussian white noise process with variance sigma square e. 
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The estimator this bias estimator as this variance given in the expression on the screen, 2 

times N minus 1 times sigma square sorry sigma power 4 by n square. It is obviously, 

mean square consistent because as n goes to infinity this mean square error although I 

say here variance I am sorry one has to be careful this is not the mean square error. 

What is the mean square error? Mean square error is given by the sum of variance plus 

the bias square right, this is mean square error we have learnt this yesterday. So, from the 

given expression how do you prove that it is mean square consistent? I had given a 

expression for the variance, but the statement that I am making is that it is mean square 

consistent; the mean square error should go to 0, it is not sufficient if the variance alone 

goes to 0 why is this is zero? So, this estimator itself bias is not zero. 

What happens to the bias as n goes to infinity? The bias also vanishes since variance and 

bias both vanish therefore, the mean square error will also vanish and hence this 

estimator is mean square consistent. So, simply do not use the variance expression to 

prove mean square error consistency, because variance and mean square error are 

different when there is a bias. In a sample mean case the sample mean is an unbiased 

estimator therefore, we did not have to worry about the bias right that is the case with the 



sample mean whereas, there the variance estimator that we are looking at is a biased 

estimator, but this bias vanishes as n goes to infinity and therefore, the term 1 and term 2 

both vanish as n go to infinity and therefore, you are guaranteed mean square error 

consistency.  


