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So let us continue with the discussion that have been having on estimators; until the last 

class we talked about Fishers information the bias and variance and so on. If you 

consider any estimation method, there are this important properties that we have talked 

about bias, variance, efficiency, consistency and so on.  

We have given formal definition for bias and variance, while bias is concerned with the 

accuracy of the estimator, variance is concerned with the precision that is how much the 

estimate is going to vary across experiments and one of the things that we should 

remember is as much as unbiasedness is desirable, it is ok to have a biased estimator. But 

what is more serious is the precision; if there are 2 estimators one being biased one and 

having a lower variability that is higher precision. And another estimator which is 

unbiased, but having a larger accuracy larger variability then one would prefer perhaps 

the more precise estimator at the cost of bias; that does not mean that always one has to 

sacrifice bias for getting lower precision, but if it has to be sacrificed then it is ok. 
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So, as a simple example suppose you take the estimator of variance, we know that there 



are two different forms of estimator; we have discussed this. The estimator of variance is 

given by unbiased estimator has a 1 over n minus 1, v k minus v bar square the sum of 

that whereas, the biased one which is given out by MLE has this expression to it; of these 

two this is the unbiased one, whereas, obviously if this is unbiased estimator of the 

variance then this is the biased one; what we mean by unbiased is the expected value of 

sigma square hat n minus 1 is sigma square n; sigma square v itself. Whereas, here the 

expected value of sigma square hat n is going to be n minus 1 by n, sigma square v 

which means; obviously there is a bias in the second estimator which is given out by the 

MLE. 

Now, what is happening here is we have lost some accuracy as we move from this 

estimator to this estimator. However, you can show that the second estimator has lower 

variability than the first one and this fundamental principle should be remembered 

always in estimation theory, whether you are estimating parameters of a pdf or 

parameters of a model; in any estimation exercise there is always a compromise between 

bias and variance always and we will keep talking about that in fact, if you recall we 

talked about AIC; Akaike Information Criterion, a while ago when we were going 

through a case study on building ARMA models from data, there we talked about AIC 

and AIC measures the tradeoff between bias and variance, but the bias that we are talking 

about in AIC is the bias in a prediction and variance that we are talking about an AIC is 

variability in parameter estimates. 

So when you have a model, very simple model let us say a first order AR or something 

very simple model does not have to be in the context of random processes; any for any 

process if you build a simple model it is likely that the simple model may do a poor job 

of a prediction, but has very few parameters; maybe one or two parameters and then in a 

bit to improve the prediction, we start increase in the complexity of the model.  

So, we may for example, move from AR 1 to AR 4 which has more parameters to 

estimate. Clearly more the parameters that you have in the model better is your ability to 

predict because you have more parameter power, you can say more man power to do the 

job for you. But then remember the information content in the data is fixed, you are 

using the same data; you are not going to use any other data set and this has to be the 

information content in the data is like the food and that has to be distributed among the 

parameters. When you have more parameters in the model; I am giving you qualitative 



arguments here, later on when we move to least squares you received quantitative 

expressions as well.  

When you have more parameters in the model, you will see that the variability in the 

parameters estimates is going to shoot up, but what have you achieved, you have actually 

reduced the bias in the prediction; you have gotten the predictions of the model closer to 

the absorbed values. So, that is a standard trade of that you would have and now you can 

extend this argument further as I have more and more complicated models, lower is 

going to be the bias in the prediction, but higher is going to be the variability in 

parameter estimates. So, in any estimation exercise there is going to be a trade of 

between bias and variance. 

So, in this example normally one prefers to work with this for large samples, when you 

have large observations you say I will just use this. When you have small observations 

may be you want to work with this, another example that we will come across very soon 

is the estimator of auto co-variance function; we have used that; the sample auto 

covariance function as a factor of 1 over n; if you recall. Let me write that expression for 

you; if you have forgotten, sigma hat of l is 1 over N sigma v k minus v bar and v k 

minus l minus v bar and here k runs from l to n minus 1 you can say mod l if you are 

looking at positive.  

So, in this case obviously, you have n minus l terms at any lag l there are n minus l terms 

in the summation and intuitively if you want an unbiased estimate of the auto covariance 

function, you should have had a 1 over n minus mod l as a factor here so that you get an 

unbiased estimate of the auto covariance function. But we still work with 1 over n, very 

well knowing that this 1 over n is going to give me a bias estimate of the auto covariance 

function. 

Why do we do that? One of the reasons is being that it has lower variance then the 

unbiased one, there is another reason that we will learn later on, but one of the reasons is 

that the variance is lower. These does not mean as I said earlier that if you have to get 

more précised estimates, you have to sacrifice the bias; it does not mean that, but if you 

have to do it then it is ok; that is what it means. Now let us talk about again come back to 

the world of unbiased estimators, what I have essentially tried to convey is precision is a 

far more serious property than accuracy; desirable property than accuracy. 



There is nothing like having both accurate précised estimator and that is what we are 

seeking here; minimum variance unbiased estimator, but can happen that for a process 

you may not be able to find a minimum variance unbiased estimator, which means you 

may not be able to find an accurate; both an accurate and précised estimator then you 

may have to sacrifice one of the things and typically we would like to sacrifice accuracy 

for precision that is the message. 
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So, what is the definition of MVUE or minimum variance unbiased estimator, well it is 

straight forward; first of all it should be unbiased and among this world of class of 

unbiased estimators, it will have the least variability. So, we are being fair we are not 

comparing this estimator with the biased one; if I start comparing the variance of an 

unbiased estimator with a biased one then the biased one will beat it and there is no limit, 

I can always sacrifice the bias highly to get more précised estimates. So, it is not fair to 

compare the variance of an unbiased estimator with that of a biased one, therefore we 

restrict ourselves the class of biased estimators. Now the notion of efficiency has actually 

stems from this concept of minimum variance estimators; these are all extremely 

fundamental concepts to estimation theory there is no escape to this. 
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Efficiency is very straight forward, we have talked about this earlier efficiency is the 

ratio of the variability of the best estimator that is the minimum variance estimator to the 

variance of that estimator under study. So the theta hat star is the minimum variance 

unbiased estimator, it goes without saying I do not have to keep saying unbiased when I 

say minimum variance unless otherwise stated you should assume it unbiased also. So, 

theta hat star is a minimum variance estimator whereas, theta hat is a estimator under 

study.  

So, the efficiency is the ratio of the variability of the theta hat star to the variance of theta 

hat because theta hat star is a the minimum variance estimator, what does it mean? The 

variance of theta hat star; the numerator is always going to be less than maximum or to 

the equal to the denominator, if theta hat is the minimum variance itself then they are 

going to be equals.  

So, the maximum efficiency that an estimator can achieve is 100 percent and this is 

called efficiency for reasons I had explained earlier. What you are pumping in to the 

estimator is data fine that is what you are feeding in; outcomes a estimate, but behind 

seen what your feeding in is the uncertainty in the data and outcomes the uncertainty in 

the estimate. So, efficiency of an estimator is a measure of the ability of the estimator to 

reduce or shrink that uncertainty to produce a more certain number; that is how you can 

interpret efficiency as and there is also relative efficiency suppose I have two estimators; 



two methods of estimating then which is more efficient then they you just divide the ratio 

of the variances accordingly. 
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Now, this is a schematic which kind of gives you an idea of; what is bias, what is 

variance and efficiency. So if you look at the left hand side plot here, what I have here is 

just some estimates indicated by this crosier marks and then there is that is indicated by 

theta hat of i; corresponding to the ith realization of data that you have; theta naught is 

the true value and then you have mu theta hat which is a average; it is a average of the 

estimates that you have across all the realizations. 

Bias is a distance between the average of the estimates and the truth; if the estimate is 

unbiased they will coincide. On the right hand side you have two different estimators 

theta 1 hat and theta 2 hat and I am just showing you the pdf of it. That is the distribution 

of the estimates obtained from this two different estimators across the realization space 

and both are unbiased as you can see the both are centered around theta naught, but the 

one in red has lower variability, lower spread then the one in blue which has a larger 

spread. So, we say theta 1 hat is more efficient than theta 2 hat. 

So, the other way of imagining this or interpreting this is that theta 1 hat produces 

estimates that have a higher probability of being closer to theta naught then theta 2 does; 

that is another way of looking at it, but you can say essentially theta 1 hat is more 

precised than theta 2 hat. So, hopefully this schematic kind of gives you a better picture 



of this terminology.  

Obviously now the hunt is for the most efficient estimator; I would like the most precised 

estimator and of course, an unbiased one and this was a question that was asked long ago 

by statisticians and the answer came out in the form of the celebrated Cramer-Rao 

inequality, which as I will show you is very closely related to Fishers information, the 

bound itself is the inverse of the Fishers information. So, what we want to ask is for a 

given estimation problem, what is the minimum variance that I should expect to see; that 

is question number 1 and the second question; question number 2 is, what is that 

estimator which will give me that minimum variance? 

Now, as I said earlier, you may be able to find the bound on the minimum variance, but 

you may not be able to necessarily find device an estimator that will get you that bound; 

in that case the minimum variance only remains an imagination and ideal one that you 

cannot realize physically. So, there are many such idealities in many different fields, so 

that MVUE also will become that you know that imagination, something that you wanted 

to achieve in life and it will remain as an imagination because you could not realize the 

dream. It is also possible that in estimation you will have the same story. So, what is the 

Cramer-Rao’s inequality? It essentially says if there is an unbiased estimator and of some 

single parameter right now we will just focus on a scalar case. 
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Suppose I have an unbiased estimator of a single parameter theta and if the pdf is regular, 



so there is a condition pdf of what? Of the data is regular then the variance of any 

unbiased estimator is bounded below by the inverse of the Fishers information, which 

means the minimum variance that is achievable for any estimator is the inverse of the 

Fishers information which now helps us appreciate Fishers information lot more; what 

this result says is as the information content in the data about this parameter theta grows; 

the minimum variance that you can achieve goes down which is good; that means, you 

can dream of getting more and more precised estimates which is good.  

So, this quantifies the expectations that people may have on how precise an estimator I 

can construct for a theta; that is the first part of the Cramer-Rao’s inequality. The second 

part talks about its existence whether an estimator exist that will achieve the lower bound 

and it exist only if you can express this relation that is given in equation 27 here; which 

relates the score which is nothing, but the derivative of the likely hood to the Fishers 

information and the theta star minus theta. 

So, what is theta here the parameter that you have estimating theta hat star is the efficient 

estimator that you are searching and Fishers information we already know, the score we 

already know.  
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In other words, what it says is if I am given the data and likelihood and so on then 

essentially what you have from these relations. So, let us write for theta hat star 

essentially I of theta inverse; times score plus your theta should be independent of y, 



should be independent of theta in fact, it is a scalar I am going to remove that sorry about 

that.  

So, what it says is that if you were to rewrite this expression in a different way which is 

what I have done then the right hand side should get me theta hat star which is purely a 

function of y. I should not need anything else to construct the efficient estimator, it can 

turn out that in many cases that this expression can in turn be a function of true 

parameter, in which case you cannot use it. This is nothing but according to the Cramer-

Rao inequality this is nothing, but your theta hat star. What does it say theta hat star is 

only a function of the observations of n of nothing else, so let us go through an example 

and will appreciate it much better. 
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So, let me actually go through this example here where we are again returning to the 

standard problem of estimating mean. Earlier we use this example to illustrate the 

concept of estimation, how the objective function can change the nature of the estimate 

then we use this example to compute Fishers information. Now we are using the same 

example to illustrate the Cramer-Rao inequality, so in this example what we want to 

know is given n observations of a Gaussian white noise process, what is the most 

efficient estimator of mean that is it. We are not asking for linear estimators, non-linear; 

we are not imposing any form the only requirement that we are asking is of course, 

unbiased as well it is understood because Cramer-Rao’s inequality focuses on unbiased 



estimator, we are asking what is the most efficient estimator of mean. 

Now we can easily work this out; for n observations what was the Fishers information 

that we had for mean? What was I of mu? 

Student: (Refer Time: 20:08). 

Sorry. 

Student: (Refer Time: 20:11). 

N by sigma square very good; n by sigma square and what is the score function that we 

had the derivative of the log likelihood, you recall sorry just 1 by sigma square no way. 

So, for the Gaussian white noise process summation. 

Student: (Refer Time: 20:46). 

Sorry. 

Student: (Refer Time: 20:48). 

Very good y k minus mu divided by sigma square good; correct. Now can you put 

together these two pieces of information and of course, theta of interest is mu. So, put all 

of this in to this expression and get me theta hat star and tell me then if it is independent 

of the parameter that you are estimate; what you get? 

Student: (Refer Time: 21:32). 

Good, let us see if there is any other person who is able to see that it is very simple 

algebra nothing much to do, does the anybody else get the sample mean. So, you should 

get the sample mean as the answer and is it independent of the parameter that I am 

estimating, yes which means I have hit the jackpot. First of all what I know from Fisher’s 

information the inverse of this is the least variance that I should expect for estimating 

mean among all unbiased estimator; it does not matter whom you ask, what is it? As long 

as it is unbiased no estimator can achieve a lower bound than this right which is inverse 

of I, which is sigma square by n and we already proved that the variance of sample mean 

is sigma square by n from that result itself we should get that sample mean achieve this 

bound. 



Now, we have also shown that indeed that efficient estimator is a sample mean, look at 

how beautiful Cramer-Rao inequality is we did not have to solve any optimization 

problem, nothing we just asked for the most efficient estimator and it came out and said 

use the sample mean which is what we use daily. But of course, it tells you a lot of things 

it says sample mean is unbiased of course, is the most efficient estimator only at least 

when from this result we know that this is true only for Gaussian white noise process.  

You should ask yourself if you were to change the pdf instead of Gaussian white noise 

suppose the pdf, suppose the distribution was laplacian or pause on some other 

distribution; Kai-square, would you expect to see sample mean coming out as the most 

efficient estimator, would you expect to see the inverse of this as the bound? Intuitively 

no, you would see something else, but that is the beauty. This entire result not only tells 

you what is the most efficient estimator, but also tells you that sample mean which is 

something that you use routinely is most efficient only for at least from this example for 

Gaussian white noise process; so that is the beauty of this Cramer-Rao’s inequality. Now, 

the other thing that of course, we see is that it is a linear estimator which is also good 

news, so that is it. So, we have I am just going to go pass this which we have discussed.  

Now let us just briefly talk about existence of an efficient estimator; what does it depend 

on of course, it depends on the parameter that you are estimating. The first factor that is 

going to affect the existence of an efficient estimator is the parameter; to be more precise 

how the parameter enters the model? Where your parameter is sitting in the model is it 

hiding somewhere behind a corner or is it making itself fairly obvious so that you can 

estimate it very well; you can think of it this way. And that is example that I have given 

and in parametric modeling this has got to do with how you parameterize your model 

alright whether you are actually parameterizing in such a way that you get an auto 

regressive model or a moving average model or some other model and so on that will 

determine your ability to find the most efficient estimator. 

The second factor of course, as you can see and we have discussed that is going to affect 

is the pdf itself; whether the pdf is regular or not in the statement itself it says if the pdf 

is regular or not. If the pdf is not regular then the Cramer-Rao inequality itself does not 

apply. 
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So, that kind of you know concludes our discussion on Cramer-Rao’s inequality and 

Cramer-Rao’s bound, but it has far far reaching implication Cramer-Rao’s bound is used 

as a gold standard for determining the most efficient estimator and tomorrow if you come 

up with an estimation method, you will also have to show for that parameter that you are 

estimate; any problem that you have take, your method may give you some variance. If it 

is unbiased, it cannot give in its variance lower than what the Cramer-Rao’s inequality is 

telling you. So, that is a test that you have to do to show the whether you have achieved 

that efficiency or how far you are away from the efficiency. Any questions on this before 

we move on to mean square error. 


