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Now, we have to turn our attention to the estimator; now we are coming to the main part 

the device that actually produces the estimate. At this point we will assume that the data 

is informative, we cannot handle everything right when we were talking of Fisher’s 

information, he said I do not care how I am estimating I am only going to focus on data. 

But now we are going to ask if the we are going to assume that the data is informative 

and qualify the estimator and as I have remarked two lectures ago, one of the first 

qualifiers of an estimator is it is bias and bias looks at the averaging property of the 

estimator, remember your theta hat is a random variable and bias is simply the difference 

between the average of theta hat across the data space, across the outcome space and the 

difference between that and the true value. 

(Refer Slide Time: 01:04) 

 

So, if the estimator is unbiased then expectation of theta hat is going to be the same as 

the true value. Is this of interest to me in practice? Yes, although I cannot verify in 

general there are some estimators for which theoretically you can estimate for example, 

you take the sample mean, we have already shown that the sample mean is an unbiased 



estimator, how do you show that? You start with the expression for estimator; what is the 

estimator? 1 over n sigma y k and suppose I want to ask whether this estimator is biased 

or not? All I have to do is evaluate the expectation of y bar, plug in the expression for y 

bar and make an assumption what assumption do I make here? 

Student: (Refer Time: 02:02).  

That y k is stationary; after having assumed that I can prove that the estimator is 

unbiased. So, the only assumption that I have to make to claim that the sample mean is 

an unbiased estimator, is that y k is stationary no other assumption is required, sample 

mean is always going to be an unbiased estimator regardless of whether y k is correlated 

white or whether it comes out of a Gaussian distribution it does not matter, as long as it 

is stationary we can claim that the sample mean is an unbiased estimator, it is as simple 

as that. 

But it is not going to be this easy for any other estimator. Here it is very easy because it 

is a simple linear estimator, suppose I were to ask you is a sample median and unbiased 

estimator would it be more difficult than this or as easy as this, what is involved in 

sample median? There is a sorting operation. So, I have to evaluate the expectation of a 

sorting operation, which is not as straightforward as simple addition because expectation 

operator is a liner operator I could easily take the expectation operator past the 

summation, but I may not be able to take past the expectation operator through sorting 

operation because sorting is a non-linear operation correct. 

So, it may not be easy to prove in general the unbiasness of any estimator by hand; what 

is the natural request? Today you take request to bootstrapping methods, which of 

course, we would not discuss in this course, but it that is something that you want to look 

up in the literature, the modern ways of qualifying the properties of an estimator is 

through bootstrapping. The idea in bootstrapping is to generate artificial realizations, 

after all how do you verify? If suppose I ask you to do by simulation, how would you do 

is suppose you did not know how to evaluate the bias or lag of lag thereof by hand, how 

would you verify if an estimator is unbiased or not? Generate the different data records, 

various realizations, compute the estimate for each such realization and then take the 

average of all of that, since you are the creator in simulation you know the truth, 



compare the average with the truth and make sure that you generate many many 

realizations so that your answer is as accurate as possible. 

But in practice I will not have the luxury to generate many realizations, I with great 

difficulty I perform an experiment in my entire PhD right maybe a few experiments, but 

I cannot perform infinite experiments. Bootstrapping comes to your rescue and shows 

you how you can generate artificial realizations from the data, today it is all about 

artificial, artificial flowers everywhere. So, it is artificial realization world, but there is a 

whole theory associated with bootstrapping, you cannot just do a bootstrapping just like 

that and then expect things to miraculously work. 

So, bootstrapping allows you to generate artificial realizations and then you verify the 

properties of the estimator. 
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And this is not only true for bias even for variance right I am going to skip this, the 

variance of the estimator again as the same story behind it, we have already defined what 

is variance. Variance is nothing but, the spread of the estimate, around its own average, 

across data records; the moment you see expectation of something, you should imagine 

different data records. 

So, again the thought process that should go on in your mind is as if you have performed 

many many experiments and for each experiment you have generated from each 



experimental record you have generated you have calculated a theta hat and now you are 

looking at the spread of theta hat across experiments. But the only point that you have to 

keep in mind is you are calculating the spread with respect to its own average, not with 

respect to the truth. So, the variance can be calculated in general also 

Now, the square root of this variance is called the standard error in any estimate, that is a 

very that is a standard what is the difference between error and standard error? The error 

in any estimate is simply the difference between the theta hat and theta naught that is the 

error. This is standard error, why this is standard error? This is what you expect to see 

across data records, now you are averaging this error in some sense across data records; 

the error in a single estimate is simply theta hat minus theta naught that will never be 

zero, the here this is a standard error and this standard error is the error at averaged in 

some sense across data records and this can be driven to zero. So, let me just conclude 

with a simple example, I will talk about the uses of variance later on let me just conclude 

the class with an example. 
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So, this is the expression now we want to now calculate, what is the variability that I see 

in sample mean? The sample mean is one that lends itself very nicely not only to 

calculations, but also to theoretical analysis. So, we return to the sample mean and now 

ask what is the variance in the sample mean? Yes the expressions look a bit intimidating, 



but if you work out they are fairly straight forward, it is just expansion and patiently 

working through them. 

Look at the last expression there are two terms that you see, what is the first term, what 

is the first term work out to? In the summation you have expectation of y k minus mu to 

the whole square, what is that? No, no expectation of y k minus mu to the whole square 

what is it? It is a variance of y right and you have n such variances. So, the entire 

summation divided by N square works out to be sigma square by n. 

Now, come to the second term, the second term you see you recognize the innermost 

term to be auto covariance right here we are not assuming y k to be white noise yet, if y k 

is white noise if white noise pro falls out of a white noise process, the second term 

vanishes otherwise the variance depends on the auto covariance structure.  
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So, for a white noise process what is the variance? Sigma square by n that is what is the 

standard expression that you see in all statistics textbooks, that the variability in the 

sample mean for a random sample; random sample would mean uncorrelated 

observations is sigma square by n. 

So, the lesson that we learn from this expression is the variability in the sample mean 

even though it is derived for a white noise process, is dependent on two things what are 

those? The variability in the data itself, how the data varies across experiments and how 



many observations you have collected; which is the one that I as an experimentalist I 

have in control the sample size, I do not have a control on the variability in the data that 

is all fixed the moment I use a fixed sensor and so on. The process and measurement 

mechanism will fix it what the good news is as n goes to infinity, the variance can be 

driven to 0, which means the standard error can be driven to 0; when I can do that for an 

unbiased estimator note carefully when I can drive the variance to 0 for an unbiased 

estimator, we say that the estimator is consistent meaning the sample mean or that 

estimate will converge to the truth, but it will converge to the truth only when n goes to 

infinity. 

So, that is one form of define defining consistency, but anyway we will talk about 

consistency later on in the next class which is next week, but this is good news for 

experimentalists, which says that as you increase the number of samples, the error in 

your estimates standard error in your estimate will fall down and this is what you are 

looking for in one of the key properties that we are looking for in an estimator. As I 

increase the sample size the estimate should get better and better.  


