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What we will do today is we look at actually some examples concerning Fisher’s 

information and then move on to talk about bias variance and mean square error and so 

on. 

Yesterday if you recall we had defined Fisher’s information as the variance of the score. 

So, particularly we discuss the concept of likelihood, and the score is nothing but the 

derivative of the likelihood and Fisher’s information looks at the variance of this score. 

So, you can remember this score as a sensitivity of the likelihood function with respect to 

the parameters that we are estimating. And what Fisher’s information is actually looking 

at is how the sensitivity is changing with respect to the outcome. 

(Refer Slide Time: 01:12) 

 

So, expression for the Fisher’s information is the expectation of dou l by dou phi to the 

whole square the expectation of that dou theta. And we talked about regularity of pdf’s 

under the regularity conditions you can show first of all that the average of this score 

across the outcome space is 0, and you can also show that this expectation that appears in 



the Fisher’s information definition can be rewritten as the negative expectation of the 

second derivative of the likelihood. 

(Refer Slide Time: 01:44) 

 

And we did mention that the second derivative of their likelihood is actually measure of 

whether you have reached the maximum or the minimum. So, you can think of this 

Fisher’s information also as what is it average across the outcome space of y, whether 

there is a peak that whether there is a maximum or not in the likelihood function. 

(Refer Slide Time: 02:06) 

 



So, best understood with an example; let us look at a very very basic example here. I 

have a stationary signal as usual, it is more or less the same example that we have looked 

at before in optimization. And here we are interested in estimating the mean. And we 

assumed that sigma square is known. 

So, the first question that we are going to ask is, if I pick and observation at random the 

goal here is to estimate the mean one of the crudest estimates of mean is just the 

observation itself. Suppose, I pick an observation and I want to ask how much 

information does the signal observation have with respect to mu assuming sigma square 

is known. So, the procedure always in Fisher’s information is to construct the likelihood 

function, and from where you construct the log likelihood function. 

(Refer Slide Time: 03:02) 

 

In this case since you are given that y k falls out of Gaussian distribution with mean mu 

and variance sigma square we know straight away that; so what are we given here? We 

had given only one observation unlike the usual case where I am given n observations. 

So, the first step is to construct the likelihood of the given observations. Since I am given 

only one observation and that likelihood is nothing but the pdf. Theta for us here in the 

first case; theta is just the mu. 

So, you can say your given theta and sigma square. When mu and sigma square are 

unknown then theta becomes both mu and sigma square, we will look at that case as well 

shortly. So, theta is the mean, now since we had given that y k is a Gaussian falls out of a 



Gaussian distribution we know from simple probability theory that f of y k; I am 

avoiding the theta here is 1 over sigma root 2 pi exponential minus half y k minus mu by 

sigma to the whole square. 

So, this is your pdf which is nothing but the likelihood itself. Since we work with log 

likelihood you take the logarithm of this. Once you take the logarithm the exponential 

vanishes, and what you have this is your likelihood but when you write likelihood it is 

better to explicitly stated as a function of theta given y k and sigma square. That is your 

likelihood; write it at the top here for the log likelihood. 

So, the log likelihood of theta I am just going to write of theta just for the sake of 

convenience I am avoiding given y k and sigma square it should be understood; you 

would obtain logarithm of this factor since sigma square is given is just some constant 

does not change with mu. So, c minus half you have y k minus mu by sigma to the whole 

square. This is your log likelihood; that is it. 

So, now all one has to do once you have constructed the log likelihood that is usually the 

most demanding step, it is not easy in many situations to come up with this likelihood 

function even though you are given the pdf. So now that you have you have the log 

likelihood the next step is to differentiate twice because we know that the Fisher’s 

information can be computed as expectation average of the second derivative of the 

likelihood. 

So, what is the second derivative of the likelihood, a log likelihood here; when I say 

likelihood more or less you should understands log likelihood. Would it be minus 1 by 

sigma square? Right, is it true? Sure? 

Student: (Refer Time: 06:27). 

Why? Why it is a negative sign coming? Good; anyway, so you have not answered 

where is negative sign comes in it comes in because you have a y k minus mu. There is a 

y k that is missing in this equation it reads as y that is the small correction you should 

note down. Since it is a single observation I have just written this y. So, the second 

derivative of the likelihood is minus 1 over sigma square and what we are interested in is 

the negative expectation of the second derivative. Since, this itself is minus 1 over sigma 



square the Fisher’s information is simply 1 over sigma square and that is the answer for 

you. 

So, what does it tell us? You just arriving at the answer is not enough, what it tells us is 

the information contained in a single observation about mu is inversely proportional to 

the variance of the process itself; which means more the randomness in the signal lesser 

is the information contained in y k. It does not tell us how good the estimate is going to 

be remember that, Fisher’s information at the moment it does not tell us how good the 

estimate is or how you should estimate there is nothing like that; there is no reference to 

how you are going to estimate it. 

All it is saying is this is the information contained in the single observation. Now it is the 

problem of still estimating mean remains. Later on we will learn very fundamental result 

known as a Cramer Rao’s inequality which will tell us regardless how you estimate the 

precision or you can say the variance of the estimate is very closely related to this 

information, in fact the bound the least error or the least variability that you can achieve 

is the inverse of this information. 

What this tells us is; this example tells us is as sigma square increases the information 

decreases, and what I just now said is the variance of any estimate of mean for this 

process it does not matter whatever method you use that estimate will cannot have a 

variance lower than sigma square. That is the Cramer Rao’s inequality result. We will 

visit when we talk about it formally we will revisit this example. But what is important 

for you to take from this example is that a single observation has information of 1 over 

sigma square and you cannot do better than this. 

Now suppose I am interested in estimating sigma square, let us say I am given mean so 

we are now turning our attention to the variance. It does not make sense to look at a 

single observation and try to estimate sigma square, because notionally if you look at 

estimate of sigma square we would expect to have at least two observations. 



(Refer Slide Time: 09:41) 

 

But let us say- by some wild method I am going to use a single observation to estimate 

sigma square. Again here there is no reference to how I am going to estimate it, so do not 

confuse the estimation method with Fisher’s information. Remember we are not talking 

of the estimator here; we are only talking about the data. 

So, the information contained in a single observation with respect to sigma square; again 

is obtained in a similar way; the likelihood function does not change, what changes here? 

Theta changes that is all. So, now, your given mu is known and sigma square changes, so 

instead of evaluating the second derivative with respect to mu. 



(Refer Slide Time: 10:23) 

 

Now you would estimate, you would calculate the second derivative with respect to 

sigma square. So, you are going to actually; in fact there is again a slight mistake there 

we should read as negative expectation of sigma square l by dou sigma square square, 

because sigma square is a parameter with which you are differentiating. And when you 

do that this is standard calculus it turns out that the information contained is 1 over 2 

sigma to the power of 4. 

Now the information here is even lower then what you can expect to see with respect to 

mu. And that make sense because, if I say a single observation gives me an estimate of 

mean somewhat fair enough but if I say now the single observation is going to give me 

an estimate of sigma square then it is going to be even worse. Therefore, the information 

is even lower. And also remember that the information contained with respect to sigma 

square about sigma square is different in general from the information contained about 

sigma. 

Suppose I were to ask you what is the information contained in the single observation 

about sigma, what would be your answer; instead of sigma square. So, you want to know 

how much information is contained in the single observation about a standard deviation 

instead of variance. What would you do? The likelihood function does not change, but 

now the parameter is sigma. So, you would actually evaluate this like I have shown you 



the expression that I have given you on the screen, bit confusing. So, what would be the 

answer, can we work it out? What is the answer that you get? 

Student: (Refer Time: 12:44). 

Sorry. 

Student: 4 by (Refer Time: 12:47). 

4 by? 

Student: Sigma square. 

Sigma square; so we will write down the answers here. 

(Refer Slide Time: 12:54) 

 

The first thing that we observed is information contained about mean is 1 over sigma 

square, information contained for sigma square we have just derived is 1 over 2 sigma to 

the power of 4, and information contained about sigma is 4 over sigma square; is it 

correct? Does anyone else get this answer 4 over sigma square? 2 over sigma square. 

Student: 2. 

Not 4 over sigma square, now you need a tie breaker; sorry. 

Student: 3. 



3, that seems to be the average of the answers. 

Student: (Refer Time: 13:35). 

3 is impossible. 

Student: 2 over sigma square. 

2 over sigma square; now it turns out there is a way of checking this. You can actually 

check if this answer is correct or not without having to calculate this. If you know this 

you can actually this, or if you no information contained about sigma you can actually 

calculate information contained about sigma square. And that is got to do with this 

relation. 

(Refer Slide Time: 14:19) 

 

In general if you have information about theta calculated, the information contained 

about some function of theta let say some phi of theta or whatever that function is; it is 

related to I of theta through this relation given in equation 14. In fact, I have calculated 

here, but if you were to cross check let us say you do not want to recalculate your I of 

sigma all fresh you can use the relation in 14 by either knowing. So, you can use I of 

sigma square to calculate I of sigma or vice versa and you can cross check. 



(Refer Slide Time: 15:00) 

 

So, what this says is the information contained in theta is not simply; so let me put it this 

way here information contained, let us say in phi of theta some function is not equal to 

phi of information contained in theta. 

So, here suppose theta is sigma then we know already now information contained in a 

single observation with respect to sigma is 2 over sigma square. Now what this relation; 

suppose I were to blindly square this, I have to imagine that the information contained 

the sigma square in simply just square of the information contained in sigma, then 

obviously that is not correct because the square of this is 4 over sigma to the power of 4, 

whereas the actual answer is 1 over 2 sigma 2 the power of 4. And you can check using 

the relation in 14 that this is satisfied for the results that we have derived. And this is in 

general true it is not a coincidence, you can prove formally that the information 

contained between theta and phi of theta related in this way. 

So, what this tells us also in general is in estimation; suppose I want to estimate alpha or 

I want to estimate standard deviation let us talk about standard deviation, in general it 

may not be true that I the optimal estimate of sigma is the square root of the optimal 

estimate of sigma square. So, that is something that one has to keep in mind. In generally 

it may not be true; it turns out for MLE it is true, but for a general estimator suppose I 

want to estimate sigma square I cannot estimate sigma optimally and necessarily claimed 



that the square of that optimal estimate is the optimal estimate of sigma square, because 

the information content is different. 

So, this is called lack of invariance property in general but MLE alone has that; that 

means if you were to estimate the parameters using maximum likelihood approach you 

can then guaranteed that whatever MLE estimate that you have for sigma through the 

maximum likelihood approach you can simply square that and you can obtain, it would 

be the same as the maximum likelihood estimate of sigma square, but in general it is not 

true. 

Therefore, when you want to estimate parameters formulate your estimation problem 

directly in terms of that parameter. Do not try to do actually do a post processing later on 

and claim optimality; that is something to keep in mind. 


