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Let us now move on to studying the properties of estimators. And this is going to be 

somewhat long interesting some time tedious, but very very essential journey. This is 

what is missed out in many many estimation courses; I mean simple estimation courses 

that you take that you must have gone through already. 

So, we will predominately talk of is goodness of estimators, but as I said yesterday it is 

not appropriate to blame the estimator if it produces a poor quality. 

(Refer Slide Time: 00:40) 

 

Suppose I go to a builder and I ask for a cost estimate of constructing a house. The final 

estimate to call goodness of the estimator that the builder gives me depends on two 

things: the information that I have given two him and the ability of the builder to take 

that and give process that and give you a good estimate. 

So, it may not be appropriate to always blame the builder, there is some responsibility 

and our part as well. Likewise here, it may not be appropriate and it is not appropriate to 

blame the estimator all the time hold it responsible for delivering a good estimate, there 



is also huge responsibility on the part of the experimentalist to generate what is known as 

informative data. And therefore, early on the Fisher was; I do not know how many of 

you he was actually an agriculturist. There are many people who have contributed to 

maths and statistics who are not mathematicians and statisticians; you dread to imagine 

what if they were. Without being in that field they have actually contributed enormously; 

(Refer Time: 01:57) for example. 

So, Fisher came along and he said where let me quantify this so called information, 

because somebody has to do that and I have to find out way of knowing up front given 

data how informative it is with respect to the parameter I am estimating. Remember, 

information content is the relative, you cannot ask this absolute question is the data 

informative; it is an imposed question. You have to ask is; yes the data is informative but 

it depends on what you want. So, the complete statement is the data informative with 

respect to a parameter or some parameters that you are estimating. And Fisher’s 

information is a metric that gives you that quantifies the information. Later on more 

complicated versions came along like Kullback-Leibler divergence and so on, but 

Fisher’s information was first on the fore front. 

We have list the other properties that I have listed here there is something that I have 

talked about, but what I am trying to I tell you here is we will formally in define bias 

variance efficiency and so on as we go along. 
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So, let us move on to Fisher’s information. As I said in early 1920s and so on Fisher’s 

seminal papers on the concept of likelihood, of course he coined this term much later on 

initially he coined the term inverse probability and so on for two reasons: his goal was to 

obtain optimal estimates of parameters of distribution of a pdf. So, simple things suppose 

I give you I generate data from some random number generator and I give you data and I 

ask you to estimate the parameters of the pdf. There are two things that you would 

require to do: first you have to guess the pdf, you have to guess from which distribution I 

have sampled the data and then you have to sit down to estimate the parameters of the 

pdf. What we mean by parameters is, if you take a Gaussian distribution how many 

parameters do we have? 2. 

If you take again uniform distribution then again you have 2. If you take chi square 

distribution what are the number of parameters that you have? 1 degrees of freedom, so 

every distribution or density depending on the case has some parameters and you want to 

identify that. You can simplify the problem and Fisher decided that the problem has to be 

simplified further by assuming a pdf. Suppose I give you the pdf also I tell you that I 

have generated data from Gaussian pdf, if I have done that then the only goal that you 

have objective that you have is to estimate the parameters of the pdf in an optimal 

manner. 

And for this purpose Fisher introduced the notion of what was called likelihood later on. 

And I will first explain what is likelihood, then I will explain what is Fisher’s 

information; because Fisher’s information and maximum likelihood approach both relay 

on this concept of likelihood. So, what is this concept of likelihood? What we did just 

say? We said that I am going to be given data and I am going to be also given the form of 

the pdf and the objective is to estimate the parameters. 

Suppose, I gave you the pdf; so now the problem statement is as follows that is to 

understand the likelihood it is a very simple concept. Suppose I gave you the pdf, 

generally what we use the pdf for? Pdf meaning I give you the parameters also, what 

would you use the pdf or computing probabilities? One of the common uses of pdf is to 

compute probability. 

Now if aware to ask, what is the probability of obtaining data within the vicinity of what 

I have observed? Remember I have observed some data, I have a record of N 



observations and I want to ask this question what is the probability of obtaining data 

within whatever I have observed; I mean it is not a yield pose question that I have that is 

why I am saying within the vicinity, I cannot ask exact question. I cannot ask what is the 

probability of obtaining the data that I have obtaining; because that would be 0 by 

probability measure. 

So we will ask a more theoretically correct question; what is the probability of obtaining 

a data within an infinitesimal neighbourhood of whatever I have observed. 
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That would approximately f of y given theta, N here is a vector of observations went to 

us times d y. Of course, you just have to imagine this in a N dimensional space do not 

think of it in a single dimensional space. It would be unidimensional if you are looking at 

a signal observation. But, now since the observation is fixed you can say this probability 

is proportional essentially, because that infinitesimal quantity d y is kind of fixed; the 

only thing that determines the probability is your f of y. So, you can say the probability 

of obtaining the data per within the vicinity of the data is proportional to the pdf at that 

point. 

We are not saying is equal to not it is proportional to it. Why are we looking at this? 

Because Fisher’s premise and it also make sense, whatever the premise that Fisher has 

given which is that of maximum likelihood is; suppose now I do not know theta which is 

the practical problem and I have the data within then there are many periods that could 



have generated the data. When I am given only the data there are many periods meaning 

I may fix Gaussian, but there are among the Gaussian there are many values of 

parameters. So, that is what we mean by many pdf. So, several pdf’s are candidate pdf, 

and I want to pick among all the candidate pdf’s one pdf that would have produce this 

data. And Fisher’s argument was that it is that pdf which produces this data with 

maximum probability which is the winner. 

So, here the pdf form is fixed, the parameters are free to vary. In the parameter space 

which parameter do I pick? I plot f of y and theta that is f of y given theta for different 

values of theta. And I pick 1 it has the maximum value, why? Because I am assuming 

this is only an assumption I may be wrong, but it works for many many situations. I am 

assuming that among all the candidate pdf that run to produce this observation the 

winner was the one that had that resulted in maximum probability. That does not mean 

that I am correct, why? I mean even low probability pdf could I have also produce this, 

but when I do not which pdf has produced I need some criterion and Fisher proposed this 

criterion. 

So, imagine that you have a Gaussian pdf producing the data, there are two parameters to 

be estimated which are mu and sigma square, I plot f of y; that is I plug in the 

observations and also now plug in different possible values of mu and sigma square I 

would get a three dimensional plot. With mu and sigma square on the x and y axis I am 

sorry, and on the z axis you the f of y. 
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So, this is how you would plot. So here is mu, here would be sigma square, and this 

would be f of y given mu and sigma square; that is for different values. And the 

maximum likelihood principle is based on the premise that the one parameter that is 

optimal is a one that maximizes the value of this pdf. Why is that? Because if the pdf is 

maximized the probability is also maximized. Remember, d is independent of theta. That 

is a point you have to note. The probabilities f of y times d y, but d y is does not depend 

on theta only f depends on theta. So, if f is maximized, probability is maximized, so we 

are assuming that among all the pdf’s that produce the data within it is vicinity the one 

that produces with maximum probability is the most likely value of theta. And that is 

why Fisher called this initially as inverse probably, because this is an inverse probability 

problem the event as occurred and you are trying to figure out what us what theta could 

have produced it. Whereas, the general probability question is your given theta and you 

are trying to compute probability, parameter estimation problem is always considered as 

an inversion problem in statistics. The event as occurred and you are trying to figure out 

what could have produced the event. 

So, with this idea Fisher proposed the likelihood function. The likelihood function is now 

nothing else, but the pdf itself, but there is a fundamental difference between these two. 

The pdf, when you talk of pdf’s thetas are given and it is only a function of y where you 

are I observation space. Whereas, when it comes to likelihood, what is fixed? Because 

you have given data and searching in space big difference, mathematically they are the 



same. So, that is why different names had to be attaches there purposes are different; f of 

y given theta is used for computing probabilities, whereas l of theta given y is used for 

estimating parameters. 

So, that is why different names are given for all practical purposes in fact not only 

practical even theoretical likelihood function is the pdf itself. There may be 

proportionality constant, but that does not change the nature of the optimal values of 

theta. This is essentially the maximum likelihood principle for you, that is all. Beyond 

this it is all about optimization. So, what is the maximum likelihood principle? Find theta 

such that this is your MLA. 

Very simple and always simple statements have profound solutions. It turns out that this 

likelihood is not as friendly as the lord likelihood. That is when it comes to tractability in 

optimization when you want to find solutions, when we say tractable it is ability to find 

the solution in an easy way. Since, pdf’s are always non negative valued or in fact you 

can say positive valued we can offer to take logarithm and maximizing the likelihood is 

the same as maximizing log likelihood. 

So, Fisher therefore proposed to maximize log likelihood instead of likelihood. So, we 

introduce this big L which is nothing but logarithm of the likelihood. So, you would 

always maximize this log likelihood; that see convention that is used in literature the big 

L is for log likelihood, the small l is for likelihood. So, hopefully now you understand the 

concept of likelihood, now it is all about if you want to obtain let us say MLE of mean. 

So, if you go back to yesterday’s problem you can take it as a simple homework problem 

where yesterday we said the estimation of c is nothing but estimating mean, mean of y. 

Now, if I ask you to obtain maximum likelihood estimate of c, how would you? 

Remember this pdf here is the pdf of the joint pdf of the N observations, but that goes 

without saying. It is not of the single observation; whatever observations you have you 

are constructing the joint pdf. So, my question to is if I were to ask you to construct an 

MLE of c what would be step 1. What do I need? I need to construct the likelihood 

function. To construct the likelihood function what do I need? I need to know the pdf of 

the N observations. 

How would you write the joint pdf of N observations there in yesterday’s example? Now 

you have to assume that e k is Gaussian white noise. Yesterday when we were solving 



we did not have to assume Gaussianity, we just needed to assume white noise; but now I 

have to assume that e k has some distribution and we will assume for simplicity 

Gaussian. If e k is Gaussian white noise what would be the joint pdf of y? Remember 

uncorrelated Gaussian white noise also independent, therefore the joint pdf of y is simply 

the product of the marginal pdf’s. And we know that when vector of random variables 

are individual are also they are Gaussian. 

So, all I need to do is write the joint pdf of y and that becomes my likelihood, then you 

take the logarithm of that work it out and find out what the solution is without referring 

to any resource. Even if you have referred I would likely to work it out, it is a good 

practice, it is a good exercise to go through because then that will make you comfortable 

with likelihood, because that is likelihood is also required to Fisher’s information. 

So, let us move on to now Fisher’s information quickly. 
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Fisher’s information as I said rests on the likelihood concept. Why does it rest on this 

likelihood concept? What is Fisher’s information all about? Very simple, now if you 

look back it is very simple. The Fisher’s information is trying to quantify how much 

information the data has with respect to a parameter theta. 

What do we mean by information? First of all, if I move in the theta space that is if I 

change theta the log likelihood function should also change. Why? Because then only we 



say that the objective function is sensitive to theta. What is the objective function in 

MLE log? The log likelihood that is your objective function, in any optimization 

problem if you believe that they there is something in that objective function to give you 

the optimal estimate what is the first step that you would do. You would actually take the 

derivative of that objective functions set it to 0. If that derivative itself is 0 for any value 

of theta then you there is no use in solving that optimization problem. 

So, the first requirement is that the objective function should be sensitive to theta. If it is 

not sensitive to theta there is no question of finding an optimal solution. So, Fisher 

introduced therefore this concept called score which is nothing as you can see derivative 

of log likelihood with respect to theta. If there is nothing complicated about this, how 

would you find the optimal value of theta? You would set up the log likelihood and then 

differentiate with respect to theta and then set that to 0, the standard KKT conditions we 

will have to apply in optimization. Set the first derivative to 0, find the optimality and 

then check if it is indeed maximizing or minimizing standard stuff. So, the first step is to 

define the sensitivity function which is called the score in those days Fisher use to call 

this as a score. 

Now, remember this likelihood function is conditioned on the data that you have. So, the 

derivative of the likelihood function with respect to this theta, depends on what? 

Depends on the data that is given to you; for a given value of theta it depends on the data 

if I change the data record the sensitivity is also going to change. And Fisher essentially 

argued and proved that the variability of this sensitive of this core across the outcome 

space of y that is all possible data records is what is Fisher’s information; that is the idea. 
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So, first is likelihood, next is of course log likelihood, then you say that if there is 

information in the data with respective to theta it should be sensitive to changes in theta, 

otherwise so it is like this as I said you take a cricketer scores and then you look at 

student grades. Suppose I am trying to estimate the student grade I change the student 

grade in my guess will a cricketer scores change, there is no impact so you say there is 

no information about the student’s grade in the cricketer score. 

So, the first is sensitivity of the objective function with respect to theta, but this 

sensitivity depends on the data record. It is a function of y it is conditioned on y. Now I 

have to walk across the entire outcomes space of y and see what is the variability? That 

is I want to see how the sensitivity changes with realizations of data. If it does not 

change then there is a problem again, it should change. 

And later on we will come across fundamental result in fact tomorrow we will talk about 

this fundamental result known as Cramer-Rao’s inequality which tells us how the 

precision of the estimate theta is related to Fisher’s information. In fact, we will see that 

the precision of theta hat is inversely proportional to the not precisions, sorry is directly 

proportional to the Fisher’s information or you can say the variance of theta hat is 

inversely proportional to Fisher’s information. More the information lower the variability 

in theta hat. 



So, to summarize Fisher’s information is nothing but variability of the score, variance of 

the score. And you have to understand this expectation is being evaluated in which 

space. 

Student: (Refer Time: 22:29). 

No, theta is not random. 

Student: (Refer Time: 22:35). 

Theta is fixed; in the white space across all possible outcomes you are calculating the 

average in not average, but the square essentially the variance how does the sensitivity 

change when I change the data record that is what is Fisher’s information. So, we will 

conclude with a simple example, in fact you can show there is a very important 

assumption by the way and that is that assumption is central to the use of MLE which is 

that the pdf is regular. 

What do we mean by regular pdf’s? Regular pdf’s are those they satisfy two conditions: 

one that and we will talk about that in MLE later on, but one of the main conditions of a 

pdf that is regular is it is parameters are not dependent on the range of values that the 

wise concrete. For example, if I take a uniform distribution what are the parameters a and 

b. A and b are themselves the range of values that why an why can take, so uniform 

distribution is not a regular one, whereas I take a Gaussian pdf the parameters are mu and 

sigma square they do not determine the range of possible values, they only at measures 

but they are not they down. So, the Gaussian pdf is fortunately regular. 

When that condition is satisfied you can show that the expectation, so remember here 

score is the first derivative of likelihood with respect to theta and information is 

expectation of the square by dou l by dou theta. And you can show that the expectation 

this variance can be calculated in a simpler way; simpler way meaning, you take the 

second derivative of the likelihood and then simply take the negative expectation of that. 



(Refer Slide Time: 24:30) 

 

The actual definition is take the first derivative of the log likelihood square it up and then 

take the expectation with respect to y. But there is a simpler way out, you take the second 

derivative of l log likelihood with respect to theta and then take the negative expectation. 

By the way what is the second derivative of log likelihood with respect to theta tell you? 

Whether the obtained optimal theta are maximum or minimum, the sin of it. So, 

essentially what Fisher’s information is doing is it is looking at that and it is now looking 

at across all possible values of y. That is all that is another interpretation. So, let us look 

at a very simple example and then adjourn. We have done? Ok sorry. So, we will 

continue tomorrow. 

Thank you. 


