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Now we move to post estimation analysis. I have not talked about sigma square e 

estimate, we will come to that later on it is not necessary at this moment. So now that I 

have estimated I would like to ask, even let I say I chose sample mean as the winner I 

say I know that there are no out layers I would like to work with the simple one I would 

like to now ask how good this estimate is. So, you may wonder why am I revisiting that 

question. Already I have made sure that the y hat of k is very close to y and I have got 

the optimal solution what do you mean by good I have only made sure y hat is driven 

very close to y. I have to now guarantee that by doing so I have actually managed to 

drive c hat close to c naught, I have to prove that. 

This is the point that is missed out, I mean at least in terms of explaining in many many 

text books. It is understood I mean kind of understood that you understand all of that, but 

it is not so. That is this is the key point you have to remember. We have only derived an 

optimal estimate and this optimality is in the sense of y hat of k being driven very close 

to y k. I have to be now, guarantee that c hat has been driven very close to c naught, and 

how do I come up with that kind of an analysis, how do I quantify the closeness and so 

on. 

Anyway, before we plunge into this different matrix the first point that you should keep 

in mind and forever is that. 



(Refer Slide Time: 02:02) 

 

The estimate that you are constructing whether it is star or naught is a function of your 

observations which have randomness in that. So, the DNA the randomness DNA in y 

will propagate to theta hat. In other words your theta hat is also a random variable. What 

does it mean if I change the data record? I will get another value of theta hat. That is 

what we mean by randomness. Therefore, theta hat is random variable in its own right; it 

has its own mean, it has its own variance, it has its own pdf, everything. For all practical 

purposes now theta hat is a random variable, now you can recall our discussion that we 

had when we talked about covariance matrix; variance-covariance matrix at that time we 

had said that we will end up looking at sigma theta hat. Now is the time to talk about 

that. 

So, now with this observation, with this fact that any estimate is random variable we will 

come up with different matrix of closeness of c hat to c naught. Why is it important? 

Because when I started off I did not realize c hat would be a random variable, but now 

the problem is more complicated than what I thought c naught is it random or fixed. 

Student: Fixed. 

C hat is random; now I have a problem, how can I talk of closeness of a random variable 

to a fixed one? It keeps changing c hat keeps changing with the data set. So now I have 

to come up with ways of determining the proximity of c hat to c naught taking into 

account the fact that c hat is random variable see there is. So, much to estimation in high 



school when we were thought how to fit a straight line none of this would have been 

even touched the periphery of our imagination, but you see how involved and how much 

people have actually thought through that is you can also say in those days they did not 

have any internet, Whatsapp and so on even if you take that away from me I will also 

think of all of these. 

So, let us now get on to the matrix of goodness of estimator. What we mean by here is 

we want to quantify now come up with matrix that tell us how close c hat is to c naught. 

One of the matrix is to now demand that the expected value of c hat, we know c hat 

keeps changing with the data record. Now we can demand different ways of or we can 

imagine different ways of proximity of c hat to c naught. 
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The first thing is we can ask if expectation of c hat is equal to c naught. So, what we 

mean by this is I repeat the experiment many many many times I generate all possible 

data records and for each such data record I have a c hat. And I take the average of all of 

that, I do not change the sample size; the sample size remains the same and I take the 

average of all of that; will that be equal to the truth? See expectation of c hat is a 

deterministic quantity. So, it is fair enough to compare a expectation of c hat with c 

naught. Directly I cannot compare c hat with c naught, because c hat is a random 

variable. If this is the case then we say the estimator is accurate and we say that estimator 

is unbiased; this is what has got to do with accuracy. 



So, unbiased and accuracy are synonymous terms. What else can we think of? The other 

thing that we can think of is variability how does the variance of c hat, what about the 

variability? This is a different measure it has got not necessarily with respect to the 

proximity of the c naught, the first one talks about proximity of c naught but apart from 

that just because this is satisfied it does not make an estimator very good; just because 

the average of c naught gets the truth you will never be able to do this in practice but let 

us say theoretically this is guaranteed. It does not make the estimator necessarily very 

good. One of the expectations of a requirement of a good estimator is if I change the data 

record I know c hat will change, but it should not change widely. 

Remember the uncertainty in the data here is your z propagates to theta hat as well. So, 

here is your sigma square, let us say sigma z or if you are looking at single signal or 

variable sigma square y here you have sigma square theta hat for the single parameter; 

between the data and theta hat is the estimator. The estimator while giving you the 

estimate of the parameter is also doing something else behind the scenes, what is it 

doing? It is letting the uncertainty propagate; uncertainty in data is propagating to theta 

hat. 

Remember you can recall this in the context of Fourier analysis, we said there is a signal 

decomposition there is an energy decomposition or power decomposition likewise here 

the role of the estimator yes is to get you given y it will give you theta hat, good; but 

behind the scenes what is it doing? It is also propagating the uncertainty. And we want 

the estimator to shrink that uncertainty; we do not want that uncertainty to propagate just 

like that. We want it to reduce, yes the data changes from experiment to experiment, 

theta hat will also change but I do not want it to change the same way as the data 

changes. I want that variability to be as small as possible; I know I cannot drive it to 0. If 

I drive it to 0 what happens? 

Student: (Refer Time: 08:44). 

Theta hat will remain fixed, match fixing any data record you give me theta hat is the 

same; that cannot happen. So, estimator should change the value of theta hat, but also 

should work on the variance of theta hat. So an ideal estimator, how is this variance 

defined? The same way as the variance is defined for a random variable; expectation of c 

hat minus expectation of c hat square this is sigma square so let us me replace with theta 



here, so that we keep things as generic as possible. So, this is your entire thing is your 

sigma square your theta hat. This is sigma square theta hat not of the data or of the 

parameter the true parameter is fixed. 

So, one metric of goodness of c hat is unbiasness, other metric of the goodness is with 

respect to its variability which is sigma square c hat very often the term used is precision. 

You must have heard of high precision instruments, wherever you see you know people 

advertising manufacturers advertising their instruments on pamphlet us they talk of high 

precision instruments. What they mean by that is if you use that instrument again and 

again you will see a slightly different reading but not too much different, it should not be 

that sometimes your thermometer that you have at home sometime shows 37, next time it 

shows 40. It is too much right it may show some variability in maybe fifth decimal and 

so on 
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Fine, the general question that we are always interested in is; does the given estimator 

produce estimates with the least variability? So, among all estimators that are possible 

the hunt is always for the estimator which has the highest precision that is the lowest 

variability. That is why the manufacturers are advertising their instruments are high as 

high precision instruments. There are many instruments to measure the same variable, 

but this guy claims that my instrument has high precision; another guy is also making a 

same claim, but then it is your duty to compare the precisions. 



So, accuracy has got to do with bias or unbiased or lack of it and variance has got to do 

with precision. An estimator can be biased, but highly précised. What we mean by that is 

this may not be satisfied that is, but it may have very low variability. We will talk about 

that more in detail when we formally define what is bias, what is variance and so on, but 

it is possible for an estimator to be biased; that means, there can be a systematic error in 

your estimate, but the variability from experiment experiment is very low. 
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Then the other thing that we want to ask is the next question that we want to ask is what 

can we confidently say about the true value. I will come to that let me actually go to the 

notion of truth before we answer what can we confidently say about the true value 

requires this brief discussion maybe 2- 3 minute discussion on what we mean by notion 

of truth in estimation. So, we have looked at two matrix accuracy and variability, but 

then we said early on in this lecture and previously also ultimately I should end the 

estimation exercise with some confident statement about the truth. But to do that first I 

have to define what is meant by truth. 

Now in any estimation analysis we have this notion of truth; that means, we say that if 

this is the truth how will your estimator perform. Then you may ask no the reality is lot 

more complicated, for example here in this example suppose we say this is how the true 

process is generating the measurements suppose that is the case then we want to ask how 

good the estimate is, whether it is accurate, what is the variability and so on. But we 



know very well that the true process may not be the simple maybe lot more complicated, 

but we do not worry about it if we want to qualify; that means, if we want to say an 

estimator is good we will first fix the truth and ask if this is the truth at least you tell me 

for estimator is good. 

So, there is always this notion of truth that is introduced in any estimation exercise you 

define what is truth and then you qualify the estimator. You say well, suppose you come 

up with some other estimation method tomorrow. And you want to present to the world 

you want to convince that it is a very good way of estimating parameters then your 

estimator will be put to test. Some known problems will be taken and then your estimator 

will be subject to test, in the sense for this known problem does it recover the truth. In 

reality whatever estimate you get we do not know what the truth is. 

Please remember that this notion of truth is very essential for the analysis the theoretical 

analysis, but when it comes to practice we do not know what the truth is. Then what do 

you do? Suppose you have estimated parameters of a model. How do you know they are 

good, because you are you do not know the truth. What do you do there? Suppose you 

have estimated some model; that means, you have estimated some parameters. How do 

you know they are good? You do not know the truth, I also do not know the truth, 

nobody knows the truth; how do you convince that your estimates are good? 

Student: (Refer Time: 14:58). 

Now again map it back to the knowns, given the estimates construct y hat and show that 

there are very close to y you will come back to this. But at the moment what we are 

saying is suppose I know the true values will your estimator recover that or not. If it 

cannot then there is no hope even for y hat that is the point here. So, in practice your test 

for goodness of estimates will be based on y hat, and of course variability also will know 

how to calculate variability. But the rigorous part of the estimation analysis consists of 

specifying the truth and requiring that your estimator is able to recover that; that is what 

is important to keep in mind. 

So, when it comes to properties of estimators there are basically two types of properties. 
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One is the statistical properties, other is the asymptotic properties. These two that we 

have discussed are statistical properties of the estimator, and then there are a few more. 

Then there is something called asymptotic properties, what is the difference between 

these two? 

Statistical properties of the estimators examine the quality, the response of the estimator 

to change in data records, when I change the data record how does the estimator behave? 

Is it going to sure or is it going to do very well. So, it looks at the ensemble direction. 

Asymptotic properties are examined or quantify the property of the estimator with 

respect to sample size. How do these statistical properties or the property of the estimate 

itself how do they respond as I keep increasing the sample size; does it get better and 

better. I mean the intuitive expectation, the natural expectation is that the estimate 

improves as I increase the sample size unfortunately there are a few estimators that do 

not improve at all even if you supply million billion trillion data points still the estimate 

quality is going to be very bad. So, we want to avoid such estimators. I will just list these 

properties. 
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And then we will spend a couple of minutes to close the section. So, I have already 

talked about bias and variance there are three other statistical properties, there are many 

more but I have just listed the most important once. There are three other statistical 

properties that are of interest: one is the efficiency in fact efficiency is a property based 

on variance. We said we want an estimator that has lowest variability. When we have 

struck gold; that means, we have found an estimator that has the lowest variability 

among all estimators we say that is the most efficient estimator. 

Initially I was puzzled to see this term efficiency why would someone use the term 

efficiency for defining an estimator that achieves the lowest variability, but you give it a 

thermo dynamic prospective or you give it a general process prospective what you are 

putting in is sigma square y. What is coming out, of course what you are putting in is y to 

get theta hat that is what you see, but behind the scenes what you are pumping in is 

sigma square y. And what estimate is pumping out is sigma square theta hat. Obviously, 

efficiency is its ability to convert that uncertainty to or to shrink that uncertainty to as 

low value as possible; and that is why the name efficiency seems to be justified. 

So, it is very efficient it is doing a lot of hard work. And the most efficient estimator is 

the one that achieves the lowest variability. And the hunt is always for the so called fully 

efficient or minimum variance estimate. In fact, the ideal estimators that we want is 



minimum variance unbiased estimator, you will see this everywhere in estimation 

literature MVUE; minimum variance unbiased estimator there is always hunt for it. 

Then the forth property that is of interest is mean square error. This mean square error is 

also a measure of variability, but the only difference with the mean square error is. 
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It is called the MSE of theta hat is that the variance is calculated with respect to the truth. 

What is the difference between this and the variance? The reference point here is its own 

average which may be truth or may not be the truth depending on whether it is biased or 

unbiased, whereas MSE specifically looks at the statistical distance of theta hat from the 

truth. 

Now again you have to wonder if I do not know the truth how am I go to calculate MSE? 

Which is true, I do not know the truth. But there are ways to calculate this, and even 

though I cannot calculate it I can guarantee certain estimates achieve minimum mean 

square error. In fact, earlier I said the hunt is for minimum variance unbiased estimator, 

but the hunt is even more for an estimator that achieves minimum mean square error. 

Obviously, I want an estimator that is as close as possible to the truth; that is a period I 

mean there is no other statement that I need to make. I do not have to say minimum 

variance unbiased nothing, I will combine that into a single statement; I want an 

estimator that achieves minimum mean square error and it turns out Bayesian estimators 



can do that. In fact you can show just with the couple of steps that this has got to do with 

your delta theta square plus sigma square theta hat; delta theta is this difference if you 

were to define this has delta theta or even other ways theta naught minus expectation of 

theta does not matter essentially the bias. 

So, you can express the mini mean square error like the Pythagoras theorem as sum 

square of bias plus the standard deviation. So, if you are going to achieve minimum 

mean square error you do not care whether it is bias unbiased and so on; it is staying very 

close to the truth. But, it is a difficult task and Bayesian estimators do that. 

Finally, after having said all of these remember, theta hat is a random variable I need to 

know the pdf. Why do I need to know the pdf of theta hat? Again on the face of it, it is 

not so clear why I am interested is it only some academic joy that I get by constructing f 

of theta hat or is there a practical purpose to it. And the practical purpose is that we will 

be able to construct confidence intervals for theta naught, it may not be clear at this 

moment when we actually talk about it will become very clear later on. 

So, the purpose of constructing f of theta hat is to make some confidence statements 

about theta naught. Remember that is the final step in the estimation. We construct theta 

hat, we ask how good it is and then if it is good then we proceed further and say that this 

is the interval in which theta naught has. And I just want to conclude the lecture with 

these asymptotic properties. 

(Refer Slide Time: 23:10) 

 



These are the three different asymptotic properties that one would be interested in it. One 

is asymptotic bias; what is the difference between statistical and asymptotic properties? 

Asymptotic properties look at how the estimates change as I change the sample size or 

how the statistical properties themselves change as I change the sample size. Remember 

when we I am calculating this all of this is based on fixed sample size, finite sample size. 

These are all finite sample size properties, I am only varying the data records; but now I 

am saying I would like to also know how this estimate changes as I change the sample 

size. And earlier I said not all estimators are going to be unbiased, there can be a biased. 
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For example, sample mean; what is the sample mean? 1 over N sigma y k. Is this an 

unbiased estimator or biased estimator? How do you find out? This is mu hat right, mu y 

hat I want to find out if expectation of mu y hat is the same as mu y. So, simply apply the 

expectation operator. What do you get? It is unbiased. But suppose for some crazy 

reason I am going to use N minus 5, it is biased; but what can you say as about the bias 

as n goes to infinity? Will it become unbiased or not? Bias is equal to 0 or not? 

Student: (Refer Time: 25:02). 

So, we say this estimator is biased statistically, but asymptotically unbiased. There are 

many such estimators; on you are calculators you will have s n s subscript n minus 1, 

what are they doing? They are estimating what? Have you looked at the calculator (Refer 

Time: 25:22)? S n is s n and s n minus 1 or sigma n sigma n minus 1, what are they 



estimating? Standard deviations, right; whether it uses a 1 over N minus 1 or 1 over N. It 

turns out that if you use a 1 over N minus on in the calculation of standard deviation 

estimating standard deviation it gives you unbiased estimates, whereas you use 1 over N 

it gives a biased estimate. Obviously, one is unbiased the other has to be biased. But this 

1 over N is asymptotically going to give you unbiased estimates. As n goes becomes 

very large it does not matter whether you have 1 over N minus 1 or 1 over N. So, such is 

the case with many estimators. 

What we are saying, what we require is it is to have biased estimators; that means, for 

finite sample size, but when n goes to infinity the bias should vanish; that is one 

requirement. The other requirement is consistency; this is like the golden property that 

you are seeking in an estimator. And this golden property is that as n goes to infinity; 

that means, as you have large number of samples theta hat should converge to theta 

naught. You recall we talked of convergence of random variables in some context, do 

you recall the context? When? At some point we brought up the notions of convergence 

of random variables. 

Student: (Refer Time: 26:54). 

No, one is ergodicity; the other context? 

Student: (Refer Time: 27:00). 

Linear time series models we said that the linear representations sigma h of n e k minus n 

should converge should produce a random variable, it should converge. And we talked 

off different forms of convergence: almost sure convergence, weak probabilistic 

convergence, mean square convergence, and so on. All of that we will talk in detail when 

we talk of consistency. Consistency is about the convergence of theta hat n to theta 

naught. 

And finally, asymptotic distributions; just now I said we need to construct f of theta at m 

that is the distribution of this estimator. What happens is unfortunately in many 

situations it is very hard to theoretically figure out what the distribution is analytically 

for finite sample size; it becomes easier if you evaluate let n goes to infinity. Again here 

we are talking of convergence we are asking now of convergence in distribution. I talked 

about that as well. So, there are four different forms of convergence and all of that are 



relevant here now. So, today you have methods like goods lapping, Monte Carlo 

simulations and (Refer Time: 28:19) data methods and so on to figure out the 

distributions. But when it comes to theory only asymptotic distributions are easy to 

compute. 

So, these are the matrix that we will come across. And these are the matrix that qualifies 

the goodness of an estimator. You see we have to worry about all of this before we 

choose an estimator. And we will ask when we study least square we will ask least 

squares efficient, consistent, unbiased, what is its variability under what conditions and 

so on; likewise for MLE and so on. 

But I want to conclude today’s lecture with one very important point. We have been 

talking of estimator all the time, but let us now I just as a foot for thought when you 

leave and this is going to be the main topic of tomorrows lecture. Let me take you back 

to the schematic that I had upfront in today’s lecture. 
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So, we have been talking of this estimator all the time; how good estimator is and so on, 

it is like asking how good my digestive system is? What if the food that I eat is very bad? 

We should also ask that right, if somebody falls ill due to food poisoning or something or 

ill and let us say its related to food thing there are two possibilities: either that the food 

that the person ate was poisoned or you know had some problems or the food was but 

digestive system has gone for a toss. 



Until now we have focused only on the digester only on the estimator, but what if the 

data that was presented itself was of poor quality. Suppose, it did not have any 

information, let us say I give you some cricketers scores over years and I ask you to 

credit the grade of some random student; does that data have any information? May be 

surprising we do not know. But depends on how close the person did not following the 

cricketer. 

But to think of it, do you think that data will have any information? That is what we 

mean by poor data, that data does not have any information. And Fisher among many 

was pioneer in coming up with this concept. And today Fishers information is one of the 

central concepts in information theory, at least in statistical inferencing which quantifies 

how much information data has with respect to a parameter. And we will learn that and 

we will then learn another milestone result in estimation theory known as (Refer Time: 

31:00) which is based on Fishers information. 


