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There are essentially 3 or 4 steps in the semi formal approach, all of which are fairly 

intuited. So, let us take the first step. 

(Refer Slide Time: 00:13) 

 

We said that we cannot think of a power spectral density in the usual sense for the 

random signal, because it exists forever, it has infinite energy and so on it is a power 

signal. So, what do we do? What we can do is we can start with the finite length 

realization that means; I may have 1000 observation or 500, 524 whatever I have n 

observations of a single realization of the random signal right. 
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So, that is what I have with me, V 0 to V n minus 1, this is what I have in practice. Can I 

take the Fourier transform of this finite length realization that I have? I can; they nothing 

stopping me right it does not violate any of the requirements. So, we can take the Fourier 

transform and denote that by V n of omega we have switch into angular frequency now 

from cyclic, but we make go back to the cyclic frequency so. 

So, V n of omega is simply what is it? It is the DFT we have already talked about DFT 

right, V n of omega subscript n. So, I can take the DFT and arrive at V n of omega n 

right and I can construct the empirical power spectral density like the periodogram, if 

you recall what is the definition of periodogram: mode V n of omega n square, that is 

subscript n indicates that I have used n, I have constructed an n point DFT from n 

observation. 

So, I take mode V n of omega n square and divided by 2 pi n. I can call this as the 

empirical power spectral density for the finite length realization, until now things are ok, 

but now if I want to connect this periodogram which is giving me an empirical power 

spectral density, power per unit frequency to the process itself. What is the difference 

between the process and what I have here? First of all this is the finite length realization 

this is not even a signal realization in it is entirety. Secondly, the process is collection of 

realizations right. So, to be able to jump to the property of the process from the 

periodogram, I need to take two steps two further steps: one which is to extend this 



realization to it is infinite realization, this is a just finite length one and secondly then I 

have to look at all possible realizations. 

So, if this is coming from the ith realization, then this is the periodogram of the ith 

realization. I am right and in fact, for the finite length part. So, now, first what we do is 

we ask what is the limit you can actually do to two things, you can ask for the example 

limit and then take the expectation or you can say no let me look at all the finite length 

realization and then let n go to infinity. So, you have to have some imagination not too 

much; your true process is a collection of infinitely long realizations and what we have is 

just a finite length realization.  

So, somehow from this finite length I have to jump to the full process and in doing so I 

must guaranty that this periodogram make sense right? Right now for the finite length 

realization does a periodogram make any sense to us? It does right because it is just a 

empirical power spectral density. If I take the average of all such realizations, finite 

length realization let us say, would it still make sense? That would be the average power 

spectral density for all possible finite length realization and now when I let n go to 

infinity. So, here I have not taken expectation. So, let us put in the expectation here.  

So, that is the first modification we say that now I compute the average spectral power 

spectral density, it is still empirical, because you know when I take DFT it assumes 

signals speed periodic and so on there is nothing like a power spectral density, you have 

to keep asking yourself why it is a empirical power spectral density? Because I had taken 

the DFT of this finite length realization and DFT assumes the signal to be periodic; so 

that is no notion of power spectral density at all, we have defined an empirical one and 

this expectation by taking the expectation what I am a doing? I am actually looking at 

average for the entire for all possible realize finite length realizations, but still this is not 

we have not gone close to the process completely, we have right there is one more 

modification that I have to make which is to let the length of the realization go to 

infinity, then when I do that I would expand the entire process. So, when I do this that is 

now the say limits evaluate this in the limit as n goes to infinity. 

So, you see there is that is why this is semi formal approach, we are only using some 

reasoning to take each step. Now the question is does this limit work out to something 

meaningful, does it makes sense to take the limit do you expect that this will give you 



something meaningful, what happens when you let n go to infinity? The frequency 

spacing now becomes a continuum because until this point delta F of 1 over n or delta 

omega was 2 pi over n. 

Now, when you let n go to infinity, the frequency spacing becomes a continuum and as a 

result, you through away the subscript on omega and you replace it with simply omega 

itself. 
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So, when you looking at this, this is you can say some gamma of omega n right for the 

ith realization inside and you can say that this is based on the finite length realization, but 

when you now do when you take the averaging and then evaluate in the limit, this now 

becomes are continues function of omega. What do you expect this to tell you now this 

gamma of omega? Look at the inner most one right this is telling us power per unit 

frequency, now this is for the expectation looks at all possible realizations and then the 

limit allows you to stretch to the infinitely long realization. 

So, what do you expect gamma of omega to tell you? Will ask whether this limit exists 

or not and so on will come to that very quickly, but what do you expect gamma from 

omega tell you; what our the process what property is it revealing? It does it still have the 

flavor of a spectral density and what is the interpretation of spectral density? Here energy 

spectral density told as the contribution of a band of frequencies to the overall energy, 

we do not say of a single frequency it is a density correct. Likewise you should expect 



gamma of omega to tell you what band of frequencies contribute to the overall power of 

the random signal that is all. Can I ask this question this is where some depth of thinking 

is required and not too much, it is not to difficulty imagine, we I just now said gamma of 

omega can be thought of as it is a density function. 
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So, if I were to integrate this gamma of omega over up band omega 1 to omega 2 what 

would this integral tell me? It would give me the contribution of the frequencies in that 

band to the power of the signal of the random signal right, but does it make sense to ask 

to make the statement contribution of frequencies? Can we say that sinusoid and cosine 

are mixing up to produce V? can we is it still legal to imagine that way or not, can you 

can be imagine random signal being made up of sines and cosines yes or no, what do you 

think? The hint is something that we have discussed earlier, is it at least (Refer Time: 

10:15) legal to think of a random signal being made up of sines and cosines; yes or no, 

then we should have been able to do take of Fourier transform right? But there was 

something else that we said when we were discussing Wiener’s GHA the mixing co 

efficient; the building blocks I can always think of sines and cosines it is only the mixing 

coefficients now that a random variables. 

So, it is still to think of the random signal being made up of sines and cosines, but the 

coefficients can change with the realization; think of it right that that is the main 

difference one main difference between the deterministic signal and the random signal 



world the mixing coefficient are now random have you just have to keep telling yourself 

although we do not deal with the mixing coefficients. 

And second difference is we look at all realizations collectively, we do not look at the 

single realization, we are taking a expectation; when we defined auto covariance what it 

we do? We took an we looked at average property, when we look at mean it is an 

average property; when we speak of variance it is an average property, always for a 

random process it is about the average property not of the specific realization, it is of the 

all average across all realizations and that is exactly what is spectral density here too. 

The spectral density is also an averaged quantity and the interpretation is that the area 

under the spectral density gives me the power the contribution of the frequencies to the 

overall power of the signal a frequencies in that band. When we talk of random process 

and ultimately if you are able to one important take away from this course for you should 

be is, when you think of a random process it should always be the collection of signals 

not of a single signal. If you are able to bring yourself to that imagination, I think you 

have really understood at least one essential point of this course anyway. 

So, this gamma of omega can be thought now as a spectral density, but the question is 

does this limit exists, how do I guaranty that this limit exists? You cannot simply take 

limit of it any function and assume it exists correct; we have already learn that a map 

many times. 

So, that is an only thing that is remaining at least in the semi formula approach to 

establish the condition under which I can think of this spectral density. So, how do we 

arrive at this condition? All you do is you start with the definition of DFT and plug in. 

So, what you do is your right mode V n of omega n square.  
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Use your standard DFT definition right that is all I am doing on done for you on the slide 

that you see right now, I have just taken the DFT n point DFT and mode V n of omega 

square is a product of the DFT and it is conjugate for that is simple complex variable 

calculus and what I have written here is rewritten gamma of omega in terms of now do 

you see the auto covariance appearing, how did the auto covariance appear?  

First we wrote the mode V n of omega square in terms of the DFTs and when we do that 

and then take the expectation that is where the auto covariance appears right that is why 

the semi formal approaches very nice. It is straight away establishes connection between 

the spectral density and the auto covariance function, and you can say some school of 

thought uses approach to even arrive at the Wiener-Khinchin relation and we will do that 

as well, but the point that you should appreciate is through the semi formula approach 

not only were we able to construct the spectral density function, not in the very 

regressive but it is and two we are able to see now straight away the connection between 

this spectral density and the auto covariance function. 

But the story is not complete yet; the stories why because we have not yet established a 

condition under which we can have gamma of omega, but we are just step away. So, you 

have this last equation on the screen 1 over 2 pi limit n going to infinity, the summation f 

of l which is dependent on n, times sigma l times e to them a minus j omega l. So, from 

here we can derive the conditions under which the gamma of omega exists and I have 



given the expression for f of l it is 1 minus mode l by n. In fact, if you were to breakup 

this into two summations, what would be the first summation? Remember f is 1 minus 

mode l by n correct. 

So, if you take the summation forget about the limit and so on if just take the summation, 

you can write it as two terms what would be the first one. 

Student: (Refer Time: 16:02).  

That would be simple the DTFT of the auto covariance correct? And then you would 

have a second term; somewhere if you where to do the reverse engineering which we are 

generally good at, you should expect the second term to vanish for in order to arrive at 

the Wiener-Khinchin relation and that is exactly what a turns out; first of all let me write 

those two terms and then we can straight away spell the conditions. 
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So, I am ignoring the limit you have l from minus N minus 1 to N minus 1. The first term 

is simply sigma of l e to the minus j omega l and what about the second term? The 

second term would be mode l by N sigma l e to the minus j omega l; clear is explain 

algebra there is nothing here, I would just taken a expression for f of l and then put in 

there. Now for the limit to exists first of all in that in the limit as n goes to infinity both 

the summations should converged; correct? What is the first condition what is it 

condition for the first summation to converge, what is the condition? 



Student: (Refer Time: 17:43). 

Sigma is absolutely convergent; auto covariance absolutely convergent correct and that is 

what we have assume and for the second one to converge of course, you have 1 over n 

here in the limit as n goes to infinity, what should happens? So, if I take 1 over n here 

remember that now there is a limit here as well, for this summation to converge already 

we have required sigma l to dk, when we see sigma l should absolutely convergent sigma 

l should dk, but we have not said anything about the dk rate, how fast it should dk will 

require further that it dk is fast enough so that this entire limit exists right? Because what 

is happening here there is a mode l although sigma dks this can actually dominate, if 

sigma does not dk slow fast enough correct. 

So, what is required is that the auto covariance actually dks fast enough; if you ask 

enough in the since that it should dk faster than the rate at which l grows that is all right 

because n as anywhere fall in out of the summation, if this summation should not blow 

up and for that summation do not blow up we required sigma to dk at a much faster rate 

than or at a rate faster than the rate at which l grows.  

So, there are two requirements one is that the auto covariance should be absolutely 

convergent that is a must, which means the auto covariance should dk. What is it means? 

It means that I cannot think of spectral density for any random process just like that; first 

of all I can think of spectral density only for random period processes that are not 

periodic. Secondly, it should be stationary one that is a anywhere given; among the 

stationary processes I can think of spectral density only for those whose auto covariance 

is absolutely convergent right. Are they stationary processes for which the auto 

covariance is not absolutely convergent? Yes and those are your periodic random 

processes. 

So, the summary is that the spectral density is now the Fourier transform of I am sorry 

there is a 1 over 2 pi missing in the expression, I will correct that in the bottom 

summation, because if you recall there is a 1 over 2 pi write in front of the limit. 
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So, your spectral density is 1 over 2 pi times the DTFT of the auto covariance function, 

subject to the condition that the auto covariance function is absolutely convergent. Even 

if you do not understand any of this as long as you remember the fact that the auto 

covariance function and spectral density form of Fourier pair that is more than enough, 

which is what is Wiener-Khinchin relation. 

So, we are striating think formally; we are saying that any stationary process, which has 

an absolutely convergent acbf can be now given a spectral representation; why do not we 

call it as a Fourier representation? 

Student: Fourier representation. 

It is still based on Fourier transforms right I mean Fourier analysis; typically we talk of 

Fourier representations of course, you can talk for any sequence you can say it is a 

Fourier representation of the auto covariance sequence. But we use the term spectral to 

explicitly say that the Fourier transform of the auto covariance function yields the 

spectral density, when I take the Fourier transform of any signal it is some quantity, it is 

mean it mean not be the spectrum, but here specifically the Fourier transform of the auto 

covariance sequence is a spectral density function and therefore, we call this as a spectral 

representation right. 



So, if you remember that auto covariance function and the spectral density constitute of 

Fourier pair that is more than enough, at least you know to compute and the spectral 

density and so on. Now using this Wiener-Khinchin relation, we can construct spectral 

density for some well known processes; what I mean by well known is? What is the most 

well known frequently encounter stationary random process the white noise correct? The 

inevitable white noise process; whether there is correlation or not in a process defiantly 

you have the white noise components sitting there. So, straight away using this relation 

you can arrive at the spectral representation of white noise process. 
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Simply apply the Wiener-Khinchin relation, remember we did not use Wiener-Khinchin 

relation to define the spectral density, we started with the fairly generic approach and 

then arrived at Wiener-Khinchin relation. 

And now the Wiener-Khinchin relation can be used to compute the spectral density, 

think of it this way until now we have describe random process in terms of auto 

covariance. Now we are describing the same processes in terms of the spectral density, 

that is the - you know real natural things natural for you; straight away now you see what 

you see here on the left is the theoretical expression for the spectral density, what is it 

that we have? 
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We have gamma of omega for the spectral for the white noise as sigma square e over 2 

pi; remember we are writing in terms of cyclic frequency, is the spectral density sorry 

angular frequency. If the spectral density were to be expressed in cyclic frequency you 

would only have sigma square, but that is a minor point most important thing to observe 

is this is fixed for all omega, what is the interval for omega? Minus pi 2 pi right. What is 

it mean? It means all frequencies are contributing uniformly to the power of the random 

process, remember I said something long ago when we talked of energy densities and 

power densities energy and power, I said the energy or a power of a signal has to be 

related to the process that is generating the signal. 

So, if I say a signal as high power, it automatically implies that the process has that 

power to generate the signal. So, here what we are saying is all frequencies are uniformly 

contributing to the power of the process that is generating white noise and in analysis 

with white light, which as uniform contribution from all frequencies; engineers call this 

as a white noise process. Statistian did not gives that name for the original name for this 

was the uncorrelated process ideal uncorrelated process, but then engineers said well will 

give it a name and called is at y as white noise and it made sense, because when you turn 

to AR and MA processes  
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For example, if you take an MA 1 with some values for the coefficients on, you can get 

this auto covariance function we are now very familiar with that or I look at an AR 1 

with coefficient 0.5, we know the auto covariance function is given by this when I look 

at the spectral density, what do you expect to see? Do you expect to see a flat one like 

this? no right what do you expect to see what kind of spectral density do you expect to 

see for these processes like this MA 1 AR 1, whose auto covariance is not an impulse? It 

will be anything, but not flat correct. In fact, it turns out that they look like this. 
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Of course this is specific for this ma one process, if the coefficient changes of the sin of 

the coefficient is different then you make get a different value correct, but what you 

should understand is any deviation from whiteness, what does it cause to the spectral 

density? A non flat one correct; which means now what is it tell you about the process 

itself, when you look at the spectral density what does it tell you about the process nature 

of the process? Not all frequencies are contributing uniformly, there not participating 

only a set of frequencies are participating in the generation of this processes and once 

again engineers called this as colored noise, why? Because unlike white light if I take a 

color red, green, blue whatever color I take we know from fix that the colors exists are 

associated only with the band of frequencies. 

So, they said all correlated processes are colored process, where as uncorrelated once are 

white noise; based on this spectral density description. So, when I tell you it is a colored 

process, you should understand correlated process of course, further I may have to tell 

you whether it is a MA 1 or ARMA and so on, but the fact is any correlated process will 

have spectral density that is different from flat spectral densities, there is a function an R 

I will show you in the next class ARMA spec. If you recall we talked about ARMA 

ACF, what is ARMA ACF and R do? It gives you theoretical ACF; ARMA spec go back 

it is not an states packages in the TSA package, try out ARMA spec and of course it is a 

good habit to develop the expression for the spectral density by hand and then use R to 

conform that indeed you get that plot. 

So, now what we will leave with today’s class is, on one hand you have the spectral 

density of the white noise process which looks flat and then the other hand you have the 

spectral density of the correlated process, which gives as a you know to paint in the 

process, we said colored process; when do you produced colored light from white light 

how can you produce? Apply, right people do that in many hotel and parties I want to 

actually produced coloured one, either you have white light and you apply a color paper, 

stick a color paper on top of the bulb or within the bulb itself I mean with they there is 

mechanism of generating the colored light. Exactly the same interpretation now comes 

fourth; what we have learnt and we have come back in full circle to say that the any 

correlated process stationary correlated process, that has absolutely convergent auto 

covariance at least in this sense, can be given a filter representation right. 



So, when I filter white noise, here I have written the signals but behind the seen what is 

happening filtering. So, the white light is actually passing through a color paper and what 

kind of color paper is it we do not know it depends on the process, ultimately produces 

as spectral density; that tells you what frequencies are present are contributing let us say 

not present contributing or participating in the generating process. So, when we meet 

again in the next class, what will do is will complete this discussion, will also talk of the 

spectral factorization and then put a close to the spectral analysis. Hopefully, you 

enjoyed the class. 


