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Very good morning. So, what we are going to do today is we are going to look at spectral 

representations of random processes. I use the word spectral representations rather than 

Fourier analysis or Fourier transforms; although implicitly we are going to base spectral 

representations on Fourier analysis. The reason we do not use a term Fourier transforms 

for Fourier analysis is of something that we have already discussed Fourier transforms of 

random signals do not exist; one has to really tailor it further simply because the random 

signal is not necessarily a periodic signal in the deterministic sense in which case any 

way we do not use term Fourier transforms nor is it and a periodic finite energy signal. 

So, it belongs to the class of power signals in the sense not all; again random signals is 

what we are going to look at we are going to restrict ourselves to stationary random 

signals or stationary random processes and ask a question; how is the power spectral 

density defined, if it is defined can we come up with power spectral density. This 

question is natural because we have learnt how this kind of a view point helped does 

understand deterministic processes in a different manner; in a manner that is different 

from what we regularly understand in time domain and one of the most important take 

away is from what we have looked at learnt in the last 5 to 6 lectures is that I can look 

upon the LTI system as a filter. 

So, the question is whether I can carry forward the same interpretation that is can the 

filtering interpretation to the random process as well and if I need to do that, what do I 

have to do.  



(Refer Slide Time: 02:22) 

 

I know at least we know from pervious discussions and pervious lectures that I can give 

a transfer function operator representation for a linear random process. And I can think 

of describing the linear random process using these impulse response coefficients for the 

random process and all of that and for the deterministic process we could give a transfer 

function operator representation or an impulse representation or a frequency response 

representation or description. 

All of this, each of this representation has its own advantage G of q inverse gives me the 

transfer function operator representation, allows me to represent the difference equation 

in a compact way. Then I have the impulse response description, we know that by 

looking at the impulse response I can draw some inferences about the properties in the 

such as stability and causality and few other things and the frequency response function 

which is the object of discussion today, is it gives me a filtering prospective of the 

deterministic process. It tells me what frequency is the system attenuates amplifies and 

so on and that is extremely useful not only in communications, but in almost every other 

applications, even let us say if I want to model the system, I want to conduct experiment 

to collect data and I want to identify from data not from first principals then I have to 

excite the system with certain frequencies. 

The frequency response function gives me some idea at least in fact, a fairly good idea of 

what kind of inputs I want to excite the process with. If it is low past filter for example, 



then there is no point in exciting in the system in high frequencies because I would not 

get any response at all, pretty much analogous to what we do in many interviews for PhD 

and MS positions; we ask the student what are the areas that you are comfortable with. 

So, essentially you are asking the band width, so that I do not ask any question to which 

candidate would not respond and so, this f r f is very useful there. Likewise here, can we 

think of a frequency response function in the random signal world and if we can then 

what utility does this particular quantity has, frequency response function has. What does 

it allow me to calculate and as I said early on today, in the deterministic signal world we 

talked about the energy spectral density for a periodic energy, finite energy signals and 

of course, power spectrum for periodic signals; can I hear; think of a similar function of 

course, this time it is going to be power spectral density; is it possible to define such a 

quantity. And we should not be wondering by we are asking this question because we 

already know in the case of deterministic signals, the energy spectral density can be 

obtained by first computing Fourier transform and then taking squad magnitude. 

So, that it was easy to construct and Parseval’s relation essentially allowed as to give the 

energy density interpretation, that is the key. We started off with Fourier transform and 

then invoked Parseval’s relation and then argued that this is energy spectral density. 

Unfortunately that root is kind of blocked if you just want to take the Fourier transform 

of the random signal and then think of Parseval’s relation; no such root exists. So, that 

there are two questions, can I think of power spectral density still despite the fact that I 

cannot Fourier transform and if I can then how do I computed it because I cannot 

compute in this manner and we already have some hints from the deterministic world 

which is that; I can start, I can go by the auto co-variances root. So, even if one path is 

blocked there is another path that is opened to us which is autocovariance root. So, that is 

what is the (Refer Time: 06:49) of today’s discursion.  

We are going to link everything, we are going to first talk about power spectral density 

then ask about how to compute it and then relook at white noise and ARMA processes in 

the contest of spectral density. In that process we learn the very famous and popular 

Wiener-Khinchin theorem and then also ask how is the power spectral density related to 

this and again we have a lot of hints from the deterministic world.  



So, let us get going now through the formalities I am going to skip the opening remarks, 

we have already, I have told you enough number of times that Fourier transforms of 

random signals do not exist in general and within this random signals you have a 

periodic signals and also periodic signals right. Now, on the face of it; if you here the 

term periodic random signal, it sounds bit strange to us. On one hand we say that random 

signals are not predictable, I mean accurately predictable and on the other hand when we 

use this qualified periodic; it kind of gives you a connotation that may be itself after a 

while, but it is not your usual periodic in the periodic sense that we call this as periodic; 

what I mean by usual is in the for deterministic signal, we say it is periodic if it values 

repeat themselves after a certain sample or time as a case may be.  

Here, that is not going to be the case, for periodic random processes we do not define 

periodicity based on the values that they take we know that when comes to random 

processes; it is all about ensemble properties average properties. Therefore, periodic 

random signals would be defined based on their statistical properties rather than the 

signal density, but will come to that no worries. 

Let us deal with the aperiodic signal first and ask how a power spectral density is a 

defined, if a power spectral density can be thought of and you have to keep telling 

yourself one of the main reasons why we are asking this questions is again this root does 

not exist for sorry; I wrote here exactly (Refer Time: 09:21) this root here does not exists 

for the random signals. So, what do we do? How do we even think of a power spectral 

density? As I have said earlier on the we were able call this as the energy spectral density 

because of the Parseval’s relation that we have and before we headed to Parseval’s 

relation; we saw that the Fourier transforms of the signal that has to be taken and then 

you could apply the Parseval’s relation. 

So, now what do we do we do not have such an option, it turns out because this problem 

was studied a long ago; it turns out that there on paper at least three different ways of 

arriving at the power spectral density of which one is the most regress one which proves 

that you can think of a power spectral density provided some conditions are satisfied; 

one condition is stationarity; you will have that actually assure that the process is 

stationary. And secondly, we already know the condition at least through the Wiener 

Khintchine relation we have been seeing that if there is power spectral density it is going 

to be the Fourier transforms of auto covariance function. 



So, we can think of a power spectral density only when the auto covariance function is 

absolutely convergence. So, under these two conditions we can arrive at power spectral 

density. So, of the three different methods to arrive at a spectral density one is most 

riggers and perhaps the most well known, but required some advanced (Refer Time: 

11:13) such as stochastic integrals and so on and that is your Wiener’s generalized 

harmonic analysis.  

Basically what Wiener did was he said look you cannot define a Fourier transform or you 

cannot give a Fourier representation, what you mean by Fourier representation is here in 

the deterministic world if you recall; we have this synthesis equation, this is called the 

Fourier representation of the signal the deterministic world, whereas we do not have such 

a luxury here. So, what Wiener proposed if you recall in this deterministic world, we 

introduce what is known Fourier-Stieltjes integrals which combined both the periodic 

and aperiodic case. 
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If you recall we had return for the deterministic world; x k we remember what we wrote 

for Fourier-Stieltjes integrals which fused both the periodic and aperiodic cases; e to the j 

2 phi f k times d x of f that is it right and d x of f takes two different forms depending 

different form depending on whether x case periodic or aperiodic; if x k is periodic then 

d x of f has an impulse like structure. 



And if x k is aperiodic finite energy then d x of f can be written as x of times d f; what 

Wiener did is essentially extended that idea to the random signal world, but it is not so 

easy right I mean looks pretty straight forward. Now what he said is take a random signal 

and then you could represent this also in the same way as the deterministic signal. So, 

this is Wiener’s idea, where the notation is kind of obvious, but there is a huge difference 

in the top signal which is for the deterministic signal world and there is top equation 

which is for the deterministic signal and bottom one which is for the random signal and 

that difference has got to do with how this quality behaves. 

Now, we just now said if x k is a periodic, we can write d x of f as x of time d f which is 

what brings us to this equation, what Wiener showed is essentially for the stationary 

random signal d v of f is proportional to and perhaps beyond this will not proceed, we 

showed that proportional to order of square root of d f; it is of order of square root of d f. 

Now it is hard to interpret beyond this and there is yet another fundamental difference 

and that fundamental difference is that since x k is deterministic; d x of f also 

deterministic quantity, but here since v k is random, d v of f which is increment in the 

Fourier transform if you think of Fourier that is also stochastic. 

So, here d x of f this d x of f that is it; it is a increment in the Fourier transform when in 

the frequency domain. Since x k is deterministic that increment is also deterministic, it is 

a deterministic quantity where as v k being random d v of f is also a random quantity and 

therefore, although symbolically these two are integrals, this is a deterministic integral 

that is your regular integral and where as this is what is known as stochastic integral and 

that is why I said the Wiener’s generalized harmonic analysis, why does a call 

generalized harmonic analysis is because it is fairly generic and also he uses the term 

harmonic. 

The reason for which will be become obvious bit later on, but what Wiener had 

contributed through g h a is essentially a Fourier kind of representation for random 

signals stationary random signals and beyond this, I would not go further we will take a 

different route to arrived a spectral density. There are you can look up either my book or 

any times series analysis book to see the full details of Wiener’s generalized harmonic 

analysis here where further properties of d v f are given and then ultimately how do you 

arrive at the spectral density starting from this integral.  



My book does not carry the full details, but it gives you essentially the salient once, but if 

you look at other text books like such as the time series theory and modeling by 

Brooklyn Davis or even by the book by Presley and so on. There is much more, there are 

many more details that show you how to arrive at the spectral density, gamma of f; 

starting from here and also what are further properties of this increment in the Fourier 

transformation.  

So, if you do not understand any of this; think of it this way, when we started of furrier 

series; we said essentially I take a periodic signal and I express it as a linier combination 

of sines and cosines correct; that is something that we understand very well now. The 

coefficients of your expansion, so if you recall in a periodic signal we had a n and b n or 

we had c n.  

Now in the random those coefficients told us how much in the sign and co sign you will 

require to synthesis the given signal. When you move to the random signal, you can 

think of the similar situation but with the change; the change is now the coefficients of 

expansional no longer deterministic, they are random variables, that is how you can think 

of; that is what Wiener’s idea essentially leads to. Basically what he did was he said look 

I can still use the sines and cosines, you still see e to the j 2 pi f k, but if you think of this 

as some kind of a coefficient here it is deterministic whereas here it is random. 

So, what you are doing is; you are taking sines and cosines, but for one realization you 

use one values of a’s and b’s or c’s; another realization you use another and so on and for 

the entire ensemble you need an ensemble of your mixing coefficients and therefore, 

they are random variables and so on and that is the basic idea that you can keep in mind 

in always when you move from deterministic to random world. I will repeat in the 

deterministic world we think of the signals as being mixture of sines and cosines with a 

mixing coefficients being deterministic. 

In the random signal world also I can think of the same thing, but now the mixing 

coefficients are random variables that is the prime difference does not matter whichever 

root you take; ultimately you will be led to this interpretation and that interpretation will 

become a lot more clearer; when we go to the world of periodic random process at this 

movement you may not appreciated that much. 



So, we will skip this Wiener’s g h a root and take what is known as a semi formal 

approach to arrived at spectral density. The semi formal approach is a lot more 

appealing, intuitive, it is not its rigorous, it does not have the mathematical rigor that you 

want; however, it has set of appealing elements in it so that you can immediately relate to 

the power spectral density based on what we have learn until now. So, that is a first 

approach and we will take this approach. 
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The second approach that is normally presented in many text books to arrive at the 

spectral density is a Wiener-Khinchin relation and many text books go a step further to 

say that spectral density itself is defined through this Wiener-Khinchin relation and that 

should be taken with a pinch of salt or sometimes with the truck of salt, it need not the 

spectral density is not necessarily defined through the Wiener-Khinchin relation, but 

there are some who may argue know that is how the definition originated. Strictly 

speaking, if you want a rigorous definition of power spectral density; you should take the 

Wiener’s g h a root why? Because that is what we did for the deterministic world, we 

took the Fourier transform and then we went through the Parseval’s relation. 

So, the equivalent of Fourier transforms; a Fourier representation in the random world is 

the through the g h a through the Wiener’s integral there and then you should proceed to 

arrive at the spectral density, it does not matter whether you do not want to debate all 

those things. Ultimately in practice you would use Wiener-Khinchin relation to arrive at 



the spectral density. At a later stage we will realize there is yet another way of computing 

the spectral density, which is through this right.  

Essentially remember when it comes to description of random processes, I can be given 

the auto covariance function which tells me what is the correlation structure or I can be 

given the time series model, depending on what you have in hand typically in practice 

you will have data. From data if you want to compute power spectral density, you will 

realize soon there are two roots; one root is to compute the auto covariance function and 

they take the furrier transform and the other root would be to build a time series model 

and then use the time series model to compute the spectral density. 
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So, all of this will fall in place once we go through the discussion, we going to skip the 

third one which is a g h a and now turn to the Semi-formal approach to arrive at the 

notion of a power spectral density. 


