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Very good morning, so what we are going to do today is we are going to discuss briefly 

on DFT. We have already started discussing that yesterday and one of the main things 

that we learnt yesterday is that the frequency grid spacing has got to do with the length of 

the signal and the minimum grid spacing, if we want to recover the continuous function 

X of f from the DFT coefficients, the grid spacing should be 1 over n and typically we 

choose 1 over n and when we do that we call as an n point DFT. 

(Refer Slide Time: 00:59) 

 

That is, if you have a signal of length N so what we have in practice is this signal length 

of length N and then through DFT, we compute X of n or X of f subscript n. So, you 

should notice that always we have use the lower case for the signal and upper case for 

the transform and k for the time keeping track of time and n for keeping track of the 

frequency that n you should all until you get into the habit of remembering it you know 

easily you should consciously make an effort to understand what is this n this n 

corresponds to f n and the n th frequency point is given by n over the big N, the big N 

again is a length of the signal and the small n runs from 0 to N minus and this is what 



essentially DFT is telling you that you should be choosing the grid point as n over n that 

is that is what it is saying; you can look up the proof that indeed you can recover. Ideally 

we should be calculating dtf the X of f that is the continuous function through DTFT, but 

instead we are calculating this because of practical limitations that we have discussed 

already. So, this grid spacing will ensure if necessary that I will be able to perfectly 

recover X of f from X of n. 

But we very rarely do that you know the other question that normally comes to our 

minds is what if I choose the grid spacing smaller than 1 over n; right now you can see 

that the grid spacing is 1 over n, I can drop the subscript here; can I choose smaller than 

this yes nothing prevents me from doing that, can I choose larger than this well you can, 

but then you would lose some information that is the point. So, there are some features in 

the signal that you would miss if you choose the grid spacing larger than this. All of this 

is done by default and FFT for you, but the user also has the opportunity to change the 

grid spacing in many of these expressions and there are a few other minor things that one 

has to remember when it comes to using this implementing this in any software package 

this is some minor things, but important ones as well. 

So, if I choose a grid spacing smaller than this; will I get more information and the 

answer is no. You will not get more information, it amounts to actually in doing some 

kind of interpolation between the grid points, you cannot generate more information by 

choosing a grid space resolution better than this, you will only be ending up interpolating 

between two frequency points; that is point number 1 and point number 2 is what you see 

in the large body of open literature and even practicing aspects for example, if you go to 

certain websites which implement this Fourier transforms in a hardware fashion or even 

in a soft fashion; they will tell you that a common practice is to 0 pad the signal, to 

increase the length of the signal. 

Now there is a historical reason to it, when computationally efficient algorithms namely 

the FFT; the fast Fourier transform was conceived by Cooley and Tukey in late 60s, it 

was required that the length of the signal be a power of 2. For example, it should be 32, 

64, 128 and so on. 

Now; obviously one cannot guaranty that always a length of the signal is going to be 

power of 2. So, what do you do right I mean no rhyming intended that, but what do you 



do, so what people did is they said let me again do some kind of an extension within that 

already we know computing DFT amounts to doing what. 

Student: (Refer Time: 05:22)  

Computing DFT amounts to what kind of an extension for the signal. 

Student: Periodic 

Periodic extension, so that you should keep telling yourself until you know it by heart of 

course, you can formally prove it, but we do not go and go into the proof. So, you should 

remember that regardless of the underlying signal, whenever you compute DFT you are 

implicitly meaning that the long signal which we have not observed is a periodic 

reputation of this finite duration signal and with the period equal to the length of the 

observation, which is a bad assumption, but the badness or the error in that assumption 

decrease as n increases; obviously, as n goes to infinity then you are ok. 

So, now coming back to 0 padding early in for a lot of a time in the sense for several 

years; may be even until 10, 20 years ago; it was required that the length of the signal be 

a power of 2, if you want to really exploit the computational efficiency of the FFT 

algorithm. Nowadays that requirement is not there, so people would 0 pad what 0 

padding would mean is just pad zeros either at a completely at the end or half at the 

beginning and half at the end, do all kinds of what you call is [FL] right to bring up the 

signal to power of 2, but 0 padding can introduce a lot of artifacts that are not present in 

the signal. 
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Why because what you are seeing is here is this signal x k; which we have observed from 

0 let us say n and at this point let us say this was the value right let us say at here it was 

some value here positive value and then negative value and so on, it had some values 

between 0 and n minus 1. 

Now, what 0 padding does is that it assumes, it remains 0 beyond this up to the nearest 

power of 2. So, suppose n is suppose you have 100 observations; you will bring it up to 

128 by padding 28; 0s right, now what is this 0 padding doing it is actually introducing 

artificial discontinuities at least of course, periodicity also introduces discontinuities, but 

the 0 padding introduces a more severe one and therefore, can produce some artifacts in 

your signal which are not present, they are just the artifacts due to 0 padding.  

In fact, few years ago I saw an article; there are many articles in the open literature, but I 

saw this particular article illustrating what 0 padding can do what (Refer Time: 08:25) 

effects 0 padding can bring on the NI website National Instruments website because they 

implement FFT in hardware and software, but I am not advertising for NI; I am just 

saying that I saw this certain it was a nice article I thought, but there are many such 

articles in the open literature also telling you how harmful 0 padding can be and 

nowadays it is not recommended. So, you can just go ahead and compute FFT of any 

length, nevertheless you will find many text books talking about the 0 padding and hence 

I wanted to have a brief discussion on it alright. 



Student: Sir. 

Yes. 

Student: sir you place the 0 padding you mention that if the sample mode number or 

times then what is require it is time. So, in place 0 padding why not take (Refer Time: 

09:12)  

Everything is possible, but what happens is all of this is see; that is a good question and 

that takes us back to two broad classes of data; one is called experimental data, other is 

called observed data; what is the difference between these two. In experimental data I 

perform the experiment right I am in charge of the experiment and I have access to the 

experimental set up I can get the data for you whereas, with observed data somebody has 

observed it and given it you; you may not even have access to the person who was 

observed it, in which case you cannot go back and say please give me more data, yes in 

places in situations where you have more data and you taken only a subset and you can 

go back to the original source and get more data, but many a times it is that you have 

only that data what do you doing. So, some imagination is required one; it is just like a 

film directors leave things to your imagination what happens after the end in any movie 

right here also the data leaves the puts that responsibility on you to imagine what 

happens after the end. 

So, anyway it is a good question in situations where you can; why not you can go back 

and collect more data, but there are many situations where you cannot have that kind of a 

luxury and that is where this is all of this 0 padding business comes in, but generally I do 

not recommend 0 padding at all. Particularly now given that you have algorithms that 

can handle signals of arbitrary length. 

So, let us proceed, so now, to summarize DFT is your finite length Fourier transform; 

you can think of FFT as finite length or Fourier transform also, but the actual 

abbreviation is fast Fourier transform; do not think FFT is another transform. FFT is an 

algorithm to implement DFT, when you compute the DFT at n points it does not matter 

how many points; n points then it is called an n point DFT and if n; by default this n is 

equal to the length of the signal because that is the minimum point number of points over 

which you have to compute the DFT.  



Now yesterday there was a question after the end of the class;you know all of this seems 

to be theory where is a practice; this is the practicing one, the other four Fourier analysis 

different Fourier analysis that we have learned are all theoretical ones, but we needed to 

go through that theory do not understand what DFT is; we could straight away jump to 

DFT there are many short term courses or short lectures that do that, but it would be 

somewhat cruel to do that, it is better to start off with continuous time periodic signals 

and come up to DFT so that you have a full picture of how the DFT has come above, 

what is the history and story behind it. Otherwise you will not understand for example, 

the main assumption that DFT makes which is that the underlying signal is periodic right 

of length n. 

So, you have the analysis equation on the top I have gone again, it is a convention that 

we have been following typically we present the synthesis equation first and then the 

analysis equation, but I presented analysis because in practice DFT is meant for signals 

that you have observed. So, the first thing that you would be doing is not synthesizing, 

you would be breaking up and then you would synthesis. Again here you can apply the 

same idea that is what I explained in the context of filtering, you can take the signal, 

perform the DFT right; that means, compute is DFT coefficients X of f n or X of n and 

plot the magnitude square what would the magnitude square be called the power 

spectrum; why would we call is power spectrum because we are assuming that the 

underlying signal is periodic. 

Now here is where the catchiest in almost all the popular software packages, you would 

see the term power spectral density like you take MATLAB for example, it would have 

psd the as a routine in r of course, the command is nice spectrum or spec dot p gram we 

are going to talk of periodogram very soon, but spectrum is what you would see 

spectrum is more appropriate than spectral density. So, if you see in any package power 

spectral density, I will tell you what it is actually doing; it is not exactly computing some 

theoretical density because it is not possible, the DFT assumes that the signal is periodic, 

so you cannot think of a spectral density per sec; it is only a line spectrum that you can 

plot. 

Anyway, so you would plot the magnitude square which gives you the power spectrum 

and then based on whatever you want and whatever knowledge you have of the 

underlying signal, let us say you want to recover the underlying signal, you are looking 



at recovering signal from its measurement, what is the difference between signal and 

measurement well there is noise in measurement.  

So, you would look at the h spectrum and then say look I know that the signal has the 

frequency, I am only going to retain that coefficient in my synthesis right exactly like 

what we do for example, when we wash our cloths, we know what is dirt and what is 

cloth. So, when we soak the cloth in the water medium it is like transformation you are 

transforming you taking into a new domain, why are we doing that because reparability 

is improved by leaps and bounds. 

In air medium which is original medium, the dirt and cloth are not easily separable. So, 

in time domain the signal and noise are not necessarily separable and most of signals that 

we encounter that is the issue, but the moment you go into this new domain called the 

Fourier domain; the separability between the signal and noise improves like anything, 

why is it happening because this particular transform has the ability to look at the entire 

signal in time; if it is periodic then it will place that entire signal at single point in the 

frequency; what we mean by this is if the underlying signal is sine wave. 

I will show you an implementation in r, but this discussion probably is good as a 

preview. So, you would search for peaks, if you know a priori the frequencies you would 

search for the peaks and at the time of synthesis you would throw away all the other 

coefficients, what we mean by throwing away is zeroing out. So, 0 out all the 

coefficients and then come back and use this synthesis equation in which case you would 

not of course, recover the measurement, but you would recover an estimate of the signal. 

So, this is the classic idea that was proposed by Wiener long ago and this is the basic 

principle behind Wiener filtering and then of course, improvements have been made to 

that, but this classic idea remains at the heart of several estimation algorithms that are 

based on Fourier transform or kind of Fourier like transforms, you transform, figure out 

what are the most important ones in the transform domain, throw away the unnecessary 

ones synthesis; exactly like your laundry that is where the synthesis equation is useful. 

Very often you would run into what is known as the unitary DFT; what is this unitary 

DFT, there is not much difference between this. 
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There is no new theory, it is not a new transform but you notice some difference, what is 

that; compared to this equation; what is the difference? 

Student: 1 over (Refer Time: 17:08)  

1 over root n why is that for people with memory loss problems not joking, but also it is 

a bit of joke and seriousness one of the advantages of working with unitary DFT is 

particularly when you writing in exam, you would be confuse whether the synthesis 

equation as 1 over n in front of it or the analysis equation. 



(Refer Slide Time: 17:28) 

 

If you go by the classical definition, 1 over n appears in the synthesis equation not in the 

analysis whereas, here there is no such issue; 1 over root n appears in both, so there is no 

confusion correct. 
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But apart from that the big advantage of working with unitary DFT is; the sum square of 

the signals is the same as sum square of the DFT coefficients; that is the big advantage. 

So, you do not have to worry whether you compute sum square of the DFT coefficients 



or sum square of the signal both give you what; do they give you power or do I have to 

divide by something this is the energy over. 

Student: (Refer Time: 18:25) 

The duration right; this is the energy of the signal over the line duration of the signal that 

you have observed n, but we know that DFT assumes the signals to be periodic. So, it is 

meaningful to calculate the power rather than energy and what is the period that it 

assumes of the length; of the signal. 
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So, which means it is better in general to work with this; I mean, I am just saying that is 

got nothing to do the unitary DFT; the unitary DFT says the norms are preserved in both 

domains that is all the square 2 norms is the same; whether you are working with the 

signal or the DFT sequence does not matter. 

Anyway, so that is something that you should remember therefore, two things when you 

are reading a text book; first confirm whether the author is using a unitary DFT or the 

classic DFT because some of the expressions slightly different they may miss out the 

factor and same goes to the software as well; whenever you use FFT go back and check 

in the documentation what DFT is it implementing; is it implementing unitary DFT or 

the classical one. Typically they implement the classical ones like the FFT in r and 

MATLAB and so. 



(Refer Slide Time: 19:51) 
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So we will skip this slide; this slide just shows you how you would recover X of f from 

X of n, this is not of interest to us; it is only for completeness sake I gave this slide and 

and in here what we are showing is that DFT assumes periodicity of the signal as when 

you sample the frequency axis, as the way we do in dft. So, what it essentially shows is 

sampling in frequency introduces periodicity in time. 
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So I will not go through the proof but let us go straight to the consequence which is again 

sampling in frequency introduces periodicity in time. What does it mean? It means that it 

is actually; the end point DFT assumes is equivalent to computing DTFS; the discrete 

time performing a; constructing a discrete time Fourier series expansion of the signal. So, 

suppose I did not ask you to compute DFT instead I told you this is a periodic signal of 

length N; what would you do, you would construct discrete time Fourier series and in 

discrete time Fourier series, you would compute the discrete time Fourier coefficients. 

How would you compute the expression is given to you; I mean this is again what we 

have seen earlier. 

Now, look at c n; what is the difference between c n and X of n, c n is the discrete time 

Fourier series coefficient that you would compute if I were to tell you that the given 

signal is periodic of length N and what is X of n; X of n is the DFT coefficient that you 

are actually computing and what I am trying to show you here is; they are almost one and 

the same except differing by factor of n; you follow. So, please distinguish between c n 

in r notion and X of n, cn is the notation that we have used for denoting coefficients of 

the Fourier series expansion and we use that for periodic signals.  

So, if you are given that already that the signal is periodic of length and you would 

compute cn. If you are not given anything, you are just giving the finite length signal 

then you would compute DFT. All we are saying is they are one and the same almost just 



by they only differ by factor, otherwise the expression looks alive; why did we do this I 

mean why I am striking a relation between DFT coefficients and the Fourier series 

coefficients because now we will shortly define what is known as a periodogram and I 

will tell you what is that. So the bottom line is now the DFT coefficient is n times the 

discrete time Fourier series coefficient. 
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So, putting together an N point DFT implicitly assumes that the give finite length signal 

is periodic be the period equal to N regardless of what the true nature of the signal is. 

You would have observed may be 100; you would have for 100 points in time of an 

exponentially decaying signal; DFT does not care, it assumes it is periodic. Yes it is an 

alarming thing to know all along you been using FFT which essentially implements DFT 

without knowing that is the assumption that it is making. 

And also couple of things that you should remember; essentially in the DFT the basic 

building blocks are cosines and sins and this n; small n that we have been talking of I 

have said earlier it refers to the n th point on frequency, but you can also give it a 

different interpretation which is that it is the small n denotes the number of cycles that 

your building blocks have completed over this length of the signal. For example, if I am 

looking at n equals 1, if I am computing X at small n equals 1 then I am breaking down 

the signal in terms of a building block that has completed 1 cycle in this length N. If I am 

looking at n equals 2 then I am breaking down the signal in terms of sins; sins and 



cosines that complete 2 cycles and so on. Obviously, fundamentals and then harmonics, 

so 0 is 0 corresponds to the dc component, 1 corresponds to the fundamental frequency 

and then the rest are all harmonics that is what it is trying to say. 

And also it is good to know the DFT inherits almost all the properties that we have 

discussed for DTFT, linearity, time shift and so on; particularly the convolution become 

a product and so on, but with the difference that the convolutions that we talk of in 

DTFT are replaced with what are known as circular convolution. Convolution itself is 

the pain, but then on top of it your circular convolution, but not much of difference in a 

circular convolution; essentially after the beyond the length of the signal, you assume it 

repeats itself that is what essentially circular convolution is; remember you will some 

past values in computing convolution circular; convolution assumes that the signal is 

periodic that is all, but we do not get into that, this is just for your information. 

(Refer Slide Time: 25:30) 

 

And very often you will see this DFT return in this way that is you introduce some W N 

as e to the j; 2 pi f over N; sorry 2 e to the j 2 pi by n and then you would express DFT in 

this way, but this is no additional information here; it is just saying that you would find 

the different notation. 
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Just at quick round up of some points to remember, the frequency resolution in DFT is 1 

over n which means if you have 1000 points, the resolution is 1 over 1000 so; obviously, 

as you have more and more observations, you have better and better resolution and we 

have talked about 0 padding earlier and also we have talked about the periodicity 

assumption and just like we have discussed before; although we are computing N 

coefficients here in DFT, the point to remember is only up to n by 2 plus 1; if assuming n 

is even n by 2 plus 1 coefficients are unique; unique in the sense that only those are 

sufficient to recover your signal, the rest of them are going to be conjugates not 

repetition they going to be conjugates ok. 

Remember when we talked about discrete time Fourier series, we said the Fourier 

coefficients are conjugate symmetric. So, here also you have a conjugate symmetry and 

the point of symmetry is that N by 2 plus 1. Therefore even when you plot the 

periodogram or even the power spectrum, it is sufficient to plot up to n by 2 plus 1. 
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In fact, N by 2 itself is sufficient to plot; we will see through one illustration and here I 

am just telling you that whatever expressions we have seen and if you want to implement 

those, essentially DFT is some kind of a linear transformation because if you rearrange in 

a particular way then you can express DFT as a matrix multiplying your signal. All you 

have to do is write this DFT for every N and stack them up, then you will see that you 

can compute the entire sequence of coefficients by multiplying your signal with some 

matrix; that matrix will consist your e to the minus j; 2 pi by n minus 2 pi times 2 by N 

and so on and therefore, it is a linear transformation, but that perspective is useful when 

it comes to computation only for some short calculations; in general you need a 

computer and a computational efficiency algorithm and that is your FFT.  

So, FFT as you know is the Fast Fourier Transform; it was conceived by Cooley and 

Tukey; who worked extensively on these algorithms and it reduces the number of 

operations from n square in regular DFT to the order of N log N and this is log base 2 

and that is a considerable reduction. So, imagine that you had 1024 points. So, 1024 

square is nearly a million correct; just above a million whereas, with FFT how many; 

what is the order of operations. 

Student: (Refer Time: 29:03) 

1024 times 10, so it has reduce considerably and that is a lot of time I can utilize that 

time for some productive things; you know what I mean right. So, originally FFT 



algorithms were fast when the power of 2 but modern algorithms have overcome that 

limitation. 


