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Let us move on now. And just summarize the discrete time Fourier transform that we 

have learnt. 

(Refer Slide Time: 00:18) 

 

A very quickly you have this synthesis and analysis equations and it tells you under what 

conditions the discrete time Fourier transform exist and also tells you what is the energy 

decomposition equivalent corresponding to the signal decomposition. You should not 

forget this in this world of transforms we are not only looking at signal decomposition, 

but also energy or power decomposition as the case may be. 



(Refer Slide Time: 00:46) 

 

So, let me summarize now the confusion that you had until now, this is a systematic 

arrangement of the confusion hopefully it clarifies certain things. 

Continuous time signals right have a periodic spectra; when I say continuous time signals 

here continuous time signals which are a periodic also, what about periodic is that also 

true work right. So, I do not have to specify periodic or a periodic. The moment I am 

looking at continuous-time signals the spectrum never repeats, that is because of the 

nature of the sinusoids which make up the family of building blocks. Discrete-time 

signals regardless of rather there periodic or aperiodic, they have periodic spectra 

whether it is energy spectra or power spectrum they are periodic. 

Periodic signals regardless of whether there continuous or discrete have always line 

spectra that we have seen whether it is a continuous time periodic signal or discrete time 

periodical signal, you always have line spectrum why because only fundamentals plus 

harmonics can participate others do not have any role in the family. Aperiodic finite 

energy signals have continuous energy spectra. So, do you notice the duality there right 

the line spectra can be thought of as discrete you can say. So, when the time axis is 

continuous, spectrum is not periodic; when the time axis is discrete then spectrum is 

periodic correct when in time signals are periodic again it is a dual, you can see that the 

spectrum is discrete and when in time the signal is aperiodic, the spectrum is continuous. 



Now, of course always continuous spectra whether you are looking at discrete time or 

continuous time signals as long as a spectrum is continuous, they can think of a spectral 

density which is what we have done.  
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Now regardless of whether a spectral density can be defined or not; we can always think 

of a spectral distribution, which tells me how much energy or power is contained in a 

certain frequency band; if you are confused you can actually now draw upon the analogy 

of probability density functions, when the random variable is discrete valued what 

happens? Do you have a density function no; you only have a mass function which is a 

line right F of x if you this small f x if you have to draw, it would look like a line like a 

similar to line spectrum that is the case of your periodic signals. 

Whereas when the random variable is continuous valued we can offered to think of a 

probability density function correct, but in both cases I can always think of a probability 

distribution function, which we call as a cumulative distribution function. Same story 

here, whether we can think of a spectral density or not, we can always think of a spectral 

distribution function and a spectral distribution function is defined in the same way as 

the probability distribution function, if you look at the expression that I have given it is 

the cumulative one of course, I have only given this for discrete time signals because we 

are only going to work with discrete time signals by enlarge therefore, the limits of 

integration on the right hand side expression in the equation there, the bottom limit 



begins from minus half the lower limit and goes up to f; if you recall we had similar 

expression for c d f which is probability of x taking on less than or equal to x, but here 

we assume that the left extreme is taken care of. 
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The left extreme in the case of discrete time signals for frequencies, the left extreme is 

minus half or you can say that the spectral density is the derivative of the spectral 

distribution, but you can say that only for continuous for aperiodic signals. For periodic 

signals how does the spectral distribution function look like? Sorry how did the 

probability how did the c d f, how does it look like for discrete valued random variables? 

Step like same story for the spectral distribution of periodic signals as well right for 

periodic signals there are there is no frequency component between two frequencies, it is 

either fundamental and then or harmonics. So, when you add up you would get a step 

like shape. So, story is a same fortunately that becomes easy to remember. 

So, this kind of summarizes the theoretical Fourier transforms that we wanted to study; 

which has given as a lot of insides into how signals can be analyzed, systems can be 

described and so on, but now we have to worry about practicality; how do I apply these 

transforms when I am given some time series or when I am given a bunch of 

observations even for a deterministic signal? I am just given some n observations how do 

I apply? None of the definitions that we have learnt, allow me to apply in a straight 

forward way for example, the most practical one that I can think of is discrete time 



Fourier transform why is it so practical? Because it assumes at signal is discrete in time; 

that means, you are dealing with sample signal, more over it assumes that the signal is 

aperiodic which may be the case. 

Even what is the problem, what is the definition of your DTFT?  
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It says sigma the expression is x k times e to the minus j 2 pi f k; k running from minus 

infinity to infinity this is your x of f right this is the DTFT, what are the issues with using 

this some practice? The first obvious one is that is assumes the signal is infinitely long 

and I have full history and future everything which I do not have in practice. So, that is 

the first limitation. Let me say I give you that I tell you that the signal is 0 like our pulse 

that we saw, signal is non 0 only over a finite time and 0 otherwise let us say that is a 

signal that I give you. Is there any further problem in using this expression? So, let say 

that the signal exists only over some interval right some k equals k 1 to k 2. No problem 

even for such signals, I say there is still an issue with this expression, what would be that 

expression? I mean what would be sorry that issue? 

Can you quickly think of what issued we may have here (Refer Time: 08:36) it finite 

duration as long as it is bounded, it is nice it is a finite length signal no convergence issue 

at all. Let say you want to code this you have to compute x of f, let us see you have to do 

this in our, what is the first thing that you will have to do? I give you x k from k 1 to k 2, 

I give you the values finite length no problem something very obvious may be your not 



actually stating it, if it is sometimes it too obvious it become difficult to state, you cannot 

compute x of f at every point right bit what is the interval for f? Minus half to half; can 

you give me x of f at every point? You cannot right it is like computing the value of a 

function at every point in a continuum, what we do? we choose to compute over a grid or 

we sample that exactly what we need to do here. 

We need to sample now until now we have dealt with sampled signals in time, but now 

we have to sample signals in frequency domain; in other words put in very practical 

terms I can only compute DTFT for finite length and over a grid right now I do not know 

what should be the grid spacing, these are the questions that we will talk about 

tomorrow, but before we do that will just quickly go through the properties of DTFT 

there fairly straight forward once we do that tomorrow when we come to the class will 

talk of DFT the discrete Fourier transform where we drop the T also, until now we have 

been saying discrete time Fourier transform; why because we are emphasising the fact 

that only in time the signal is discrete, but in the frequency domain it is continuous. 

But now we have decided for practical reasons I have to now discretize frequency as well 

therefore, we drop the T and we know simply say DFT; it is actually healthy for us one 

we do not have to actually at over one more sound right. So, we will look at the DFT, 

concept of DFT and periodogram, but before we do that we will just quickly parts 

through some of the useful properties of DTFT and we shall observe that DFT also 

preserves most of these properties except with some minor variations. When you use 

FFT in any software package, what your actually doing is your computing DFT. FFT is 

only an algorithm it is not it is stands for fast Fourier transform, it is only an algorithm 

for computing DFT. It is not a new transform yet again fortunately for us, it is only an 

algorithm that was a conceived by (Refer Time: 11:48) in mid 60s, until then computing 

Fourier transform as a night mar because of the number of computations that one has to 

perform. Today you have really very efficient algorithms or computing FFT. So, we will 

meet tomorrow and then go through DFT and periodogram. 

Thank you. 


