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Not much as I have explained basic idea is to break up the signal into sins and cosines. 

But one as to exercise some caution when it comes to the mathematics, depending on the 

nature of the signal, that is all you have to remember. The basic ideas remains the same 

whether you look at continuous time or discrete time signals or periodic and aperiodic 

signals. In fact, today very soon we will move on to the discrete time world, where there 

is going to be definitely an additional source of confusion and complication, but the 

underline principle is a same, it is just that the mathematics is slightly different and may 

be some practice will help you get over this confusion. 

So, let us get started from where we left of yesterday. So, we started to look at Fourier 

transform and this Fourier transform was introduced in the context of continuous time 

aperiodic signals with finite energy. 

(Refer Slide Time: 01:08) 

 

Now, why are we looking at finite energy signals? Basically, if you look at this equation 

here for the Fourier transform you can see and we have discussed this earlier as well, the 

Fourier transform itself exists first of all when this signal is absolutely convergent. 



(Refer Slide Time: 01:26) 

  

We have talked about this before, but in the context of discrete time signals. So, here we 

are extending the same to the continuous time signals. Of course, the integration runs 

from minus infinity to infinity; this is a necessary and sufficient condition, a slightly 

weaker condition for the existence of Fourier transform is that the signal has finite 

energy. So, this is a weaker requirement whereas the one on a top is a stricter 

requirement all right. And in any case if this is satisfied definitely the signal as finite 

energy, but not vice versa and as long as this is satisfied you can say that the Fourier 

series that we had here sorry the Fourier integral that we have here converges in a mean 

square error sense, what we mean by mean square is, as we include more and more 

frequencies, the error between the approximation of x of t remember we talked about this 

approximation yesterday. 

One can construct an approximation of a signal using Fourier transform by only 

concentrating on a select set of frequencies and that is the basic idea that is used 

whenever you want to approximate a signal using Fourier transform.  
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So here as well instead of including all the frequencies in this integral that you see in the 

synthesis equation, I can focus on a band of frequency and as I include more and more 

frequencies the error in the approximation starts to decrease and the weaker condition 

says that as long as the signal has finite energy the error will go squared integral squared 

error will go to 0 as of goes to infinity that is as you include more and more frequencies. 

Whereas the first one is a strict one; it says basically as long as the signal is absolutely 

convergent, this integral will get you the signal of interest any way. So, those are 

existence conditions, what you have to remember practically is Fourier transform of any 

signal and here I also want to broaden your horizon, although we are talking of signals 

you should think of these as sequences as well because very soon we shall talk of Fourier 

transform of auto covariance functions and auto covariance function is not a signal per 

se, but it is a sequence. 

So, whatever you are learning for signals equally applies to sequences, if just a different 

terminology. So, here we looking at continuous times sequences and what we are doing 

is we are saying I have continuous time a periodic finite energy signal and I am going to 

look at the frequency content of the signal, here we are not looking at fundamentals to 

harmonics we just want to know what frequencies are present when you think if the 

deterministic signal, but a better question to ask is what frequencies are contributing to 

the overall energy of the signal? Now why I say that this is a better question to ask is 



when we move to the world of random signals, we do not think of necessarily although it 

is possible to do that necessarily we do not think of signal reconstruction we do not think 

of necessarily signal decomposition, we are mostly focused on energy or power 

decomposition because we are going to talk of random signals and they are power 

signals. 

We are going to talk about power decomposition rather than signal decomposition and 

that is why I been emphasizing this transition from signal decomposition to power or 

energy decomposition sorry. So, here let me now go further and show you the energy 

decomposition, all of this we have discussed I am going to move on; this again is due to 

a partial relation which shows that energy is conserved in both domains, but apart from 

that statement what this tells us is how frequent how the frequencies is a certain band are 

contributing towards the overall energy right, if you compare this with what you saw for 

periodic signals, we had first of all power decomposition earlier and secondly, while the 

signal still had in the time domain we had the integral, for the in the frequency domain 

we had a summation because we where only talking of fundamentals and harmonics 

where as now we have a continuum of frequencies and that is why we have now an 

integral in the for the frequency domain as well. 

Now, earlier we talked about line spectrum; what I mean by earlier for periodic signals 

we talked about line spectrum, simply because when we plot the square of the Fourier 

coefficients verses the index, it is only defined at some at discrete values of n and so on 

right this a typical sketch of mod c n square verses and we call this as line spectrum and 

we said we cannot think of a density here, where as now with the a periodic signals since 

we have a band of frequencies or a continuum of frequencies, we can think of a density 

function what we mean by density is? Energy density here because we are looking 

focused on energy signals and this relation due to Perceval, tells us or gives us a hint of 

what could be an energy density in frequency. 

Earlier we had defined an energy density in time and the energy density in time was 

defined as simply mod x of t square. Why did we define this as a energy density, what 

was the reason for defining this as a energy density? 

Student :( Refer Time: 08:02).  



Yeah the area under this will give me the energy right now we have a hint here, what 

would be the energy density in frequency. If I yet to ask, what is the energy density in 

frequency? That is energy per frequency that would be mod X of F square that is it. So, 

magnitude square of the Fourier transform is energy density. So, there is striking 

similarity in the expressions, but you have to remember after all that the area under this 

energy density should give me the energy area of course, the frequency is running from 

minus infinity to infinity. Now if I want to know, what is the energy contribution; or you 

can say the energy contain in a band of frequencies, then you can do that you can 

actually get the energy over a frequency band F 1, F 2 by simply integrating the energy 

density over that band naturally. 

And whenever you have difficulty understand understanding these densities, go back to 

probability density functions; there the role of the probability density is to allow me to 

calculate probabilities, here they are allowing me to calculate energies that is all or 

power whatever soon will talk of power spectral density also. So, where ever you look at 

densities, the concepts remain the same the area under the density will give me some 

quantity for which it is a density function and then you can think of moments and so on. 

In this course we do not per se deal with moments of this densities, we are only talking 

about density functions that is all; in a more advanced course we go into the moments of 

this density and see how they are useful in signal analysis as I said in a joint time 

frequency analysis, we look at the moments namely duration bandwidth and so on or 

mean time mean frequency, center frequency and so on which will give us some valuable 

insides into the features of the signals ok. 

So, any questions on this as I said now you can see a pattern whether it is continuous 

time periodic or a periodic, we come up with the synthesis equation, then we have an 

analysis equation and we briefly talk about it is existence and then move on to either 

power or energy decomposition, if a density function can be defined we define so 

otherwise not. But the utility of this analysis if what you have to understand; while 

utilities are manifold, what we are focused on is the decomposition of the energy or the 

power right. 
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Once again a plot of mode of X of F square verses frequency; here once again we only 

plot over the non negative frequencies because it is symmetry, you can show it is 

symmetric with respect to frequencies tells us what are the predominant frequencies 

present in the signal right for example, mode X of F square can look like this flat what 

does it tell us? All frequencies are contributing uniformly to the overall energy, what 

kind of signals would have that? 

Student: impulse. 

Impulse right and impulse signal direct. In fact, it is continuous time function that we are 

looking at therefore, it is drag that you have to think of and let me tell you cannot straight 

away use this integral that you have used earlier to evaluate the for example, you cannot 

use this synthesis equation to come up with the Fourier transform of drag. 
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You need what is known as theory of generalized functions do not get scared we will not 

talk about it, but for special class of function, for which you cannot just ordinarily 

evaluate this integral there exist a theory of generalized functions, that will allow you to 

compute the Fourier transform in any case. So, this a very important thing to remember; 

the Fourier transform of an impulse whether it is continuous time or discrete time has a 

flat energy spectral density all right and there are many other possibilities it could have 

like you could have a density function that looks like this or this or may be this ones. So, 

there are numerous types of density functions that you can have depending on the 

frequency content of the signal, what makes up the signal and remember ultimately there 

is no signal without a system. 

So, very soon we will talk about if this is some density of some function some signal x 2 

here, we will may talk about this in the discrete domain, but does not matter the results 

are the same, you can think of if this is the density function of some signal x 2 and 

imagine that to be generated by G which is being driven by an input x 1; then you can 

use these densities to draw inference about what characteristics a system has, provided 

you know the frequency content of x 1 and that is what leads us to filtering ideas ok. 

So, let us move on and now look at an example talked about all of this.  
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So, here is a finite duration rectangular pulse signal unlike the periodic case where as I 

gave you expression for one period, this is exactly exist only for the period that I have 

shown for the interval that I have shown, because we are looking at finite duration 

signals and periodic signals. So, the Fourier transform in fact, given by the sinc function; 

sinc function is your sin c function that you must have encountered in the different 

situations and this integral is very easy to evaluate is nothing to be scared about. How 

does sin c function look like? It looks like this crazy creature that you see in Hollywood 

some alien movies and so on which as it is hands spread all over as I say [FL] something 

like that. 

So, that is what you see here if you look at the shape; on the left hand side we have the 

energy density in time. 
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It is not the signal remember the signal also looks similar what we are showing is mode x 

of t square and on the right hand side you have mode X of F square, this is not the 

Fourier transform or the magnitude of the Fourier transform all right. Now what do you 

notice here? The finite duration signal that we had has an energy spread over a finite 

interval in time, that is the energy goes to zero after some finite time, let me say energy 

density goes to 0, let me not say energy exactly whereas, when you look at energy 

spectral density that is mod X of F square, it is it does not go to zero identically even 

after any finite frequency, it only goes to zero asymptomatically. 

Now, this has profound implications in time frequency analysis that is when you want to 

know for example, what frequencies where present at what time; we will talk about this 

now duration bandwidth product being bounded below by some quantity, what this result 

says is in fact I will show you couple of example as well, is that whenever I have a signal 

whose energy is are localized over a finite interval in time, you cannot have the energy 

also localized over a finite frequency band; any signal whose energy is localized over an 

interval in time, will have an infinite spread of energy density in frequency as well in 

frequency. 

So, the vice versa applies if I have an energy dense spectral density that is only 

concentrated over a band and not like the one that you see here, then you are guaranteed 

that the energy density in time will be spread all over we just now saw right. So, this is 



what we have drawn here is a flat line is an extreme case of the example that we are 

looking at. The Dirac is extremely localized; you cannot have a more localized than a 

Dirac. So, let us at an example to understand this relation between so called duration; 

which has got which is a measure of the spread of energy density in time and bandwidth 

which is a measure of the energy spread in frequencies. 

Bandwidth is a term that you would encounter in almost every field of signal analysis; in 

control, in signal processing and so on and typically we even in moderns when we talk of 

moderns we talk of bandwidth and so on. So, bandwidth as got to do here with this 

spread of energy in frequency or energy density in frequency.  
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So, let us looks at a an example here another example where I have a finite duration 

sinusoid; not like your regular sine wave of course, I have taken a complex exponential 

and it turns out that the Fourier transform is once again a sin c function shifted in 

frequency. So, here is how the signal looks like in time, it is a finite duration sine wave 

you see both the real and imaginary parts that is what I am showing you here because 

that is a complex sine wave and what you see on the right now on the top you see the 

energy density of the signal in time and what you see at the bottom is the energy density 

of the signal in frequency ok. 

So, you can see that the energy density is exist only over a finite interval in time 

whereas, the energy density is spread all over in frequency. Now suppose I increase a 



width of the signal, what should happen to the energy density in time? It will spread then 

one should aspect shrinkage in the energy spread or the bandwidth of the signal, let us 

see if that happens. 
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So, here I have now extended the duration of this sinusoids complex sine wave and as 

you as expected the energy density in time has dilated has increased, but what you see 

for the energy density spectral density? It as shrink right you can compare. So, here you 

have a larger bandwidth meaning more and more frequencies are coming in to explain 

the signal and as I expand the signal, fewer and fewer frequencies are contributing and 

that is got to do with the very nature of the Fourier atoms itself, we will not go deeper 

into why this is happening, but the intuitive answer to that is it is just the nature of the 

bases functions or sorry building blocks that we are using that the in a continuous time 

Fourier transform case, strictly speaking we cannot use a term bases function we can 

only use atoms; where as in the periodic case we can any way. 
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So, what you see here is that longer duration results in narrower frequency spread and 

this is just a general information for your results, this is known this is a fundamental 

result in time and frequency analysis which is also known as the uncertainty principle for 

signal analysis, although there is nothing uncertainty here there is no randomness or 

probability here, the only reason why this is known as uncertainty principle relation in 

signal analysis is because of it is striking similarity with some other result that you see in 

physics what is that? 

Student :(Refer Time: 20:31).  

The Heisenberg’s uncertainty depends; which says that you cannot really locate the 

position and the velocity you cannot really locate the position and I have measure the 

position and velocity of a particle with arbitrary accuracy at the same time. If you have 

located the position then you have lost you have huge uncertainty about it is velocity and 

vice versa. So, the sigma square t that you see here although it is not corresponding to 

any random event, it is still corresponds to second moment the sigma square t is a second 

central moment of the energy density in time and the physical meaning of that is a 

duration; it gives you an idea of how long the signal exit it exist in time, it is not exactly 

equal to the duration of the signal, but it is a measure of that pretty much like your 

variance. Variability gives you an idea of the spread of outcomes and sigma square 

omega is the bandwidth, it is once again a measure of the spread of energy in frequency. 



So, what it says is the energy spreads in times and frequency cannot be arbitrary small if 

one shrinks the other as to expand and vice versa what is implication again we are going 

to talk about the implications, we may not even be hampered by this result in this course, 

but in a broad scheme of things we are limited by this result in any joint time frequency 

analysis; when I say joint I would like to know for example, over what duration what 

frequencies existed contributed, when I am doing that see you think of time domain 

analysis as looking at this direction and frequency domain analysis as this direction they 

are kind of orthogonally you can think of and joint time frequency analysis is looking at 

some diagonal trying to figure out what is happening here and there and it says you are 

limited when the moment you do a joint time frequency analysis; any way so we will 

move on and before we move on to the discrete time world, I want to introduce what is 

known as Fourier stieltjes transform. It is not a new transform let me tell you do not get 

scared remember you have two different expressions in a continuous time case, where 

depending on whether it is periodic or a periodic. 

In the case of periodic we do not use the term Fourier transform for we just say the 

Fourier coefficients and then we have an expression for the Fourier coefficients that we 

saw in yesterdays class and today we talked about Fourier transform, which is an 

integral. So, on one hand you have summation and the other hand you have integral, is it 

possible to use both this expressions and that is what Fourier stieltjes transform does. It 

says define an increment d x of f as x as x of f times d f. So, you have this equation that 

you saw for Fourier transforms right integral X of F sorry. 
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X of t e to the minus j two pi f t d t and go back to the synthesis equation. 
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So, you have this X of F e to t he j 2 pi F t d F. 

Replace this X of F d F with some increment of think of it as an increment in X of F that 

is what it says. So, when you do that you get this expression all we are doing this we are 

rewriting the synthesis equation using this d X of F that is all we are doing.  
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Now what is a advantage of this, how does it help me if we fuse both this results? It 

helps me in fusing this result by saying that whenever the signal is periodic for example, 

then I let d of d X of F to be this that is it is it looks like spikes. 

(Refer Slide Time: 24:32) 

 

So, the d X of F would only have c ns right this is how d X of F would be it is not 

defined at intermediate frequencies at all, it is only defined at discrete set of frequencies 

so that the integral boils down to summation. 



When it comes to aperiodic signals, I am going to let d X of F being defined as X of F 

times d F then I get the Fourier synthesis equation. So, that is the basic idea you see that 

and this is a standard trick that is used also in probability density functions and random 

variables and so on; although I did not discuss that you can write the expression for the 

probabilities for both discrete valued and continuous valued case by adopting this kind of 

a strategy. In the continuous valued random variable case we said the probability is 

simple the integral f of x f x right; whereas when it comes to discrete valued case we do 

not use that integral we simply use the mass function and say it is sigma f of x; you can 

fuse both those expression using the same trick or we have not discuss that, but you can 

now think of the same way.  

So, this is a useful in fusing both words, but otherwise nothing much more we will make 

use of this expression a bit later on when it comes to random signals. So, let us move on 

now to the world of discrete time signals unless you have any questions.  


