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What we are stepping into is world of frequency domain analysis and basically if you 

recall what we have learnt until now, we have learnt that the correlation structure of a 

random process can be understood by examining the auto covariance functions and so on 

and what we learnt importantly is that a linear stochastic process; its stationary, can be 

given a linear representation if it satisfies so called Wiener Paley condition. 
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Well the Wiener Paley condition says that the logarithm of the spectral density should be 

greater than minus infinity, one of these. So, this is the condition that is called a Wiener 

Paley condition, I am not stated that earlier, but remember I said that the spectral density 

should satisfy certain conditions and this is one of the conditions; main conditions and 

also we have noted the parameterization of the impulse response which leads to either 

AR or MA models implicitly amounts to parameterizing the spectral density and thirdly 

when it comes to dealing with nonstationarities, we have trends and we have seasonal 

components and so on and we have learnt how to use the so called periodogram to figure 

out, what is a cyclicity in a given series and so on. So, we have now given enough 

previews on to into what is known as the spectral representation or at least we have 

enough motivation to look at the frequency domain analysis. You must treat the 

frequency domain analysis and spectral analysis as more or less anonymous. 

Now, the question that we want to ask now is for example, what is meant by spectral 

density? What is its theoretical definition? That is question number 1. 
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What is the interpretation? How do I interpret spectral density? There was one such 

questions long ago, what is meant by non negative definiteness and so on and what do 

we mean by a periodic random process? For example and in general how do you define 

periodicity for a random signal and how does one arrives at this condition? For example, 

we will not prove that, but where does its stem from and it is possible in fact, ones we 

have understood the definitions of spectral density and so on, and by invoking the non 

negative definiteness of AVCF as a requirement, it is possible to derive the linear 

representation which is a convolution form that we have learnt until now. So that compel 

as to look at frequency domain analysis of signals, of course, if you look at the 

practicality of frequency domain analysism essentially it is used to detect periodicities.  

But in theory, there is another use to frequency domain analysis or frequency domain 

representations which is for example, to arrive at this conditions, but more importantly 

for understanding a process from the filtering view point and the frequency domain 

analysis is perhaps the most powerful way of interpreting or obtaining a filtering 

perspective of any linear operation linear time in variant operation and that is what we 

will step into. 
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Now w hen as I am just going to skip this because I have already said this before the 

frequency domain characterization is nothing but spectral representation and this term 

itself, the spectral representation term itself stands from the word spectrum and usually 

spectrum is associated with frequencies in mathematic spectrum is also associated with 

Eigen values. Here we will assume that the spectrum term always convertates frequency 

domain analysis and occasionally I must have mention at some point in time power or 

energy and so on. We will first learn what are these? What are the definitions of energy 

and power of a signal in a formal way and then move on to frequency domain analysis? 

So, there are several questions that we are going to look at for example, we will ask what 

is the definition of a spectrum, what is the difference between energy and power of a 

signal. 
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What is the utility of a spectral decomposition and so on, I am not going to read all the 

questions, but these are some of the burning questions that we want to obtain answers to 

this. 
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And in all of this, the Fourier transform is the main tool of course, will define energy and 

power independent of the Fourier transform, but by enlarge to be to be able to carry out a 

spectral decomposition of the signal or to detect periodicities to obtain a filtering 

perspective or to do all of this we will use Fourier transform as the main vehicle. 



But that is not the only transform in which you can do things, but this is by enlarge the 

most popular transform and even Fourier never imagined the impact of his proposition 

right such powerful is the Fourier transform. Now before we jump into the random world 

that is understanding how Fourier transforms are applied in the random world it is very 

important to understand how this transform is applied to deterministic signals because 

things are a lot easier Fourier transforms exist in the deterministic world for signals 

whereas, when we move into the random world will realize that the Fourier transforms of 

random signals do not exist in the way, it defines for the deterministic world. So, what do 

we do? I have just now said that Fourier transform is a main tool and now I am giving 

you kind of a kind of a anti climax statement that look the Fourier transform does not 

exist for random signals is that the end of the road or is at some other path. And that is 

where we will take the Weiner Kirstein root, but that can wait what will begin with is 

understanding the Fourier analysis of continuous time and discrete time deterministic 

periodic and aperiodic signals. 

And see how they are useful you will notice that some of these transforms or series and 

so on are useful in theory while some others. In fact, may be one or 2 are useful in 

practice. So, it depends on what you want to do we will use this tools for both for a 

theoretical understanding as well as particle analysis of signals and I will of course, point 

out as we learn each of this tools I will point out which of this is useful in theory and 

which of it is useful in practice. But I should also tell you that in general it is assume that 

you have this background, I am not going to make that assumption, but in a general time 

series analysis course it is assume that you have some basic background and since you 

have learned Fourier transform four years ago some of you; you must have conveniently 

forgotten. So, will assume that you do not know much, but some of this expression 

should allow you to tap into your memory and recall these expressions. 
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Let us begin with the definition of the energy of a signal we keep using energy and 

power left and right sometimes interchangeably and we learn that we should not be doing 

that. 

The energy of a continuous time signal is define as have given in the box there its simply 

integral mod x of t square d t. Now for the first time we dealing with continuous time 

signals, you should note that and therefore, we have an integral there and why do I have 

an modules to take in to account the fact that a signal can have a complex value 

representation the signal may not be complex value, but I can always give a complex 

value representation will not go into that. For real valued signals you can through away 

the modulus there in the definition and for a discrete time signal which have also define 

of for which have define the energy is simply a summation. Now these definitions are 

inspired partly from physics and electrical engineering will not go into the origins, but 

you should simply remember that this is the energy. From a functional analysis view 

point, you can think of this as a square 2 norm of a function if you think of x of t or x of 

k as a function this is a squared 2 norm if it is exist for functions existing in normed 

spaces; so called you know Hill Bert spaces. 

Alright and there are several examples you can think of for which these integrals or 

summations exist, the moment we perform an operation, we always have mathematical 

operation we ask the question thus this operation yield anything, we also think of this in 



a regular surgical operation will this operation yield anything we should not be like a 

operation successful patient died right here we are evaluating integrals or summations for 

the discrete time signal what is the guarantee that it converges. Now all signals that have 

finite 1 norm or 2 norm will be will qualify for the energy calculations.  

As an example exponentially decaying signal right or all finite duration bounded signal it 

does not matter what does signal is if it is finite duration its energy will exist, on the 

other hand if I take a sinusoidal signal can I compute the energy, I mean will it will this 

integral turn out to be finite or even the summation, what do you think? For a sinusoidal 

signal the notion of energy does not exist as define this way you can define energy in 

whichever way you want, but this by enlarge the definition of energy that is used and 

accepted.  

In this sense, the energy of a sinusoidal signal does not exist over the infinite time you 

can; however, compute the energy of a sign way over one period this that is a not an 

issue at all. So, we say that all periodic signals in general are not energy signals because 

say energy infinite when that is what now leads us to the definition of an energy signal 

any signal with finite energy is set to be an energy signal. 

In general, if a signal exists forever, now they can be signals that are not periodic, but 

can exist forever. 
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For example, you could have a signal; discrete time signal, is this a periodic signal? 

Student: (Refer Time: 11:31). 

Why? 

Student: (Refer Time: 11:32). 

The frequency is irrational and therefore, it is not possible to find, this is a discrete time 

signal, you have to be careful if I replace this with a corresponding continuous time 

signal then it is a periodic signal, discrete time signals are periodic if and only if I can 

find an integer number of observations after which the reputation occurs and I cannot 

find such an observation for this signal. On the other hand the signal exists forever, now 

if you ask whether this is an energy signal or not, what would be your answer? What 

about a random signal? Do you think random signals are energy signals, why? 

Student: (Refer Time: 12:24). 

Ok, Any other answer? The answer is it does not converge, yes Priyan. 

Student: (Refer Time: 12:32). 

No, what about random signals I am asking. 

Student: (Refer Time: 12:36). 

Can I call it as an energy signal? No. So, it is kind of obvious know because its exist for 

ever there is no way this integral is going to yield me a finite value therefore, the simple 

lesson that we learn is random signals are not energy signals. Now this definition of 

energy also is complemented by the energy definition of a power then will talk of energy 

densities and power densities. So, power signal is defined. 
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Based on the definition of power itself, in fact, we define average power. So, if I am 

given a continuous time signal or a discrete time signal, the power is defined in a limiting 

sense and in an average sense. So, you can see here that we are evaluating the power in 

the limit as T goes infinity and what we are doing is we are computing the energy over 

that period 2T and then dividing it by 2T because power is the rate at which energy 

changes with time that we already know we have essentially use that definition in 

coming up with this one.  

The interval is 1 over 2T integral minus T to T x of t square d t is a energy of the signal 

over the interval 2T divided by 2T will give me the average power over that is signal 

over that interval in time and then we let we evaluate this in the limit as T goes to infinity 

that is what gives us the overall power, power for the overall duration of the signal and 

likewise we have here the definition of power for the discrete time signal again a signal 

with finite power is set to be a power signal. 

Now, if you take a sinusoidal signal for example, do you think these limits exist? It will 

exist. So, that is a point here or any periodic signal for that matter it is not an energy 

signal, but it is a power signal and a signal cannot be both an energy and a power signal 

which means if its energy is finite; obviously, the average power over the duration will 

be zero all right and we say that the signal is power signal if the power is nonzero and 

finite. And likewise you cannot has signals if it is analysis energy signal it cannot be a 



power signal it has to be a only one of them there are some pathological cases for its 

neither power or energy signal types will not worry about it but. 

Now we will ask a question is a random signal a power signal what you think? Can we 

assert that say with confidence at a random signal is a power signal or no not necessarily 

what if it a stationary, what do you think? Stationarity would mean that that it cannot go 

unbounded right. So, you can expect a station is signal to have finite power on the other 

hand, an non stationary signal we are not, so sure. So, in general, we will concern 

ourselves with random signals that are power signals because we deal by enlarge with 

stationary signals we can hope that the signal that we are looking at has finite power we 

have already concluded at that random signals are not energy signals. So, as I said 

examples as I said periodic signals stationary random signals in general all finite duration 

and amplitude signals will have zero power because their energy signals alright. 
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As I said it is also possible that a signal is neither energy, not a power signal, but will not 

worry about the signals. 
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Now, we move on to the notion of energy density and this is important because we have 

used the term spectral density before power spectral density before of course, without 

defining what it is now slowly we are getting into the definitions of what is density. Now 

this is not a complicated definition it stem from the classical notion of density something 

per unit something else, some quantity per unit something else. So, here if I take you 

back to the definition of energy right you see that the energy is integral mod x of t square 

d t. 
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Now, if you think of an energy density and you think of this as that energy density, in 

time when we talk about densities will have to specify in which domain, for examples, in 

physics or in mechanics, we talk of densities we say mass per unit volume or mass per 

unit length, mass per unit area and so and so, we are specifying in which dimension, I am 

looking at the density. Likewise here, I am specifying here energy density in time that is 

what the function that we are interested in. If we think of such a function any density 

function first of all that domain has to be a continuum that automatically tells us that in 

discrete time I cannot think of energy densities, because as the definition shows energy is 

a summation we can speak of densities even if you recall the notion of random variable 

probability theory we have spoken of probability density functions only for continuous 

valued random variables not for discrete value random variables because then the 

outcome space is not a continuum for discrete value random variable.  

Likewise here for continuous time signals I can think of an energy density in time and 

that energy density is simply mod of x of t square. Typically when we talk of densities 

we say area under the density should give me the quantity itself. Here we are looking at 1 

dimensional time, but you can think of energy density in space, you can think of joint 

energy densities in space and time and so on, this is only the beginning. So, we have now 

coined this term energy density in time and its defined as mod of x of t square simply 

them magnitude square, but you should remember in which domain we are talking of 

energy densities here it is time. You can also think of this an energy density as an 

instantaneous power, but I do not want you to think more on those lines it is just for your 

understanding. So, here is a simple example. 
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I have an amplitude modulated signal, here you can see it is a finite duration, it dies 

down. So, it should have finite energy on the left you have the signal and on the right you 

have the energy density in time. 

Why are these densities useful? Although we do not get into the utilities of this energy 

density in time here, in a more advance course like a joint time frequency analysis course 

or multi scale analysis and so on, we use this density functions to define what is known 

as a duration that is how long the signal must have existed to get an idea of what how 

long the activity existed where in time is energy concentrated such pieces of information 

are useful in fault detection and so on, suppose this was a feature of a fault I would like 

to know how long the fault persisted and when it occurred in time and so on for all 

particle purposes. Now this is a density function and you can define mean variance all 

higher order moments and so on, the only difference is the interpretation we are looking 

at we are not looking at random signals we are looking at deterministic signals and we 

are talking of energy densities just like probability density is allowed us to calculate 

probabilities and then moments and so on.  

Energy densities allow us to calculate energies and then moments of the energy density 

we do not use the moments of energy density in time in this course at all, but I am just 

telling you that there is a lot more utility to this energy density than what you can 

imagine. So, on similar lines, we can define power density nothing great about it, it just 



is inspired from the same approach as a energy density go back to the definition of power 

density in time absorb that big T in the denominator into the integral there bring that into 

the integral. So, you get half of minus T to T integral mod of x of t square by t d t of 

course, you can say have a left out a factor of 2, but that is ok. 
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You can say ideal it should be mod of x of t square over 2T, it is correct. So, strictly it 

should have been that it is so, we will we missing the factor of 2, there as long as I factor 

that into my integral it should recover the total power, but the difference between the 

energy density and the power density is only these factor; obviously, right because 

energy and power differ by factor of time. Now for the discrete case the energy and 

power densities are not defined we have already observed that energy density does not 

exist in time for discrete time signals. So, does the power. So, does not the power density 

because the time is not a continuum, it is as simple as it. 
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Now, having said that we can think of densities for this discrete time signals slowly, we 

are emphasizing on discrete time signals because that is what we work with for discrete 

time signals, we can actually turn to another domain in which the density is exist for a 

and the classical domain is frequency domain. We will see how that is done.  

At this moment we will not define anything more in terms of densities, we have just 

learnt how to define densities in time at the suitable time, we will learn how densities are 

defined in frequency domain, in that domain the densities may exist because the in the 

transform domain may be the signal representations are continuous functions just 

because I have a discrete time signal it does not mean that in a new domain the signal 

does not have a continuous representation; that means, in a new domain it can be a 

continuum where as in the time domain the discrete times signal leaves in the discrete 

domain. So, we will that is a (Refer Time: 23:25) of our Fourier transform where we 

move from densities in time to densities in frequency, what allows us to move from 

densities in time to densities in frequency is what we are going to learn shortly. 


