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Very good morning, what we will do today is conclude our discussion on auto regressive 

models and then briefly talk about ARMA models and hopefully we will have the time to 

move on to non stationary models where we look at how to handle trends and integrating 

effects, where eventually we will be led to ARIMA models, but today let us begin with 

from where we left off yesterday. So, we said that the ACF of the auto regressive models 

can be obtained by setting of the Yule Walker equations and then solving accordingly for 

the p up to lag p and then lag p onwards you use the difference equation form if needed 

and this Yule Walker equations can also be used to estimate the model parameters, as we 

have discussed yesterday. 

In practice what you do is; you use this Yule Walker equations even on the estimates of 

the ACFs and later on we will study how good these estimates are you are; both for 

moving average and auto regressive models when we get into estimation. So, significant 

part of modelling exercise the effort goes into determining the order of the model 

whether it is auto regressive or moving average or any other model that you are fitting to 

data this. So, called order really is very important and we know already with respect to 

auto regressive models the ACF does not provide any clear information on what the 

order is and to that effect we have looked at PACF. 

So, we will just dwell a bit more on that and talk about the connections between PACF 

and the auto regressive model of order p we have mean; I mentioned this before that the 

PACF at the lag l is the last coefficient of the auto regressive model that you fit of order 

l. We will re trade that point today, so in general if you look at keeping aside PACF 

concept. If you were to determine the order of auto regressive processes, there are 2 ways 

of approaching this problem 1 is of course, to try out AR models of different orders. 

So, you begin with AR 1 in general how do you determine for example, if a model order 

is suited to the data or not, what is a generic procedure for the test of a model; it could be 



M A it could a ARMA it does not matter any model that I fit; how do I know if I have 

reached or I have guessed appropriate order for the data. 

Student: (Refer Time: 03:22). 

Sorry. 

Student: Residual. 

Residual should be right correct. So, what you do is here also you fit AR models of 

successive orders right and then as you move as you fit an AR model of a certain order 

examine the residuals, if they are satisfactory then you stop if they are not then you 

successively increase; until you reach a point where you say I have kind of reach the so 

called true order or the appropriate order. 

(Refer Slide Time: 04:08) 

 

Now, that is the basic idea also that you will see essentially in the PACF, the other 

approach is to of course, discount for the propogative effects in ACF which leads us to 

PACF, it turns out that both of them are actually equivalent to using PACF formally 

although on the face of it they appear to be different, computing PACF essentially 

amounts to fitting AR models of successively increasing orders. Intuitively if you look at 

the PACF how are we estimating the PACF, we can discuss from lag to onwards because 

at lag 1 anyway PACF is same as c ACF.  



(Refer Slide Time: 04:37) 

 

So, at lag 2 what I am doing; I am actually discounting; I fit a model first order model 

AR for v k right. So, let us call this as phi 1 1 and plus some epsilon k and we hope if 

you force it we kind of pretend that the residuals will have white noise characteristics, 1 

has to test later on whether indeed this is the case. So, we fit an AR 1 model; forward 

model and we also pretend AR 1 model backwards. Let us call this as may be tilde 5 phi 

1 1; v k minus 1 plus e tilde k. This is not necessarily going to be correct we do know; 

we will have to figure out, but to compute PACF at lag 2; whether you are doing this 

explicitly or not, this is what you are actually doing implicitly. You are fitting an AR 1 

model for v k, forward model and a backward model and then you are going to work 

with this residuals. 

So, in place of v k suppose I had epsilon just to be more generic. So, I have epsilon and 

epsilon tilde, after having fit the forward and backward models then I am going to look at 

the correlation between epsilon k and epsilon tilde of k. So, what you are actually 

looking at is also the residuals of auto regressive models, when you move on to the 

PACF at lag 3; again you are going to fit an AR 2 model; a forward AR 2 model and a 

backward AR 2 model and then you are examining the residuals. At some point if you 

are hit the so called true order then there will be nothing in the residuals and what you 

are managed to do is between the PACF at lag l and lag l plus 1; let us say your theta at l 

plus 1; what you are managed to achieve is explain the process perfectly by an AR and l 



minus 1 in module in the since here of course, we are looking at lag 2, so you are fitting 

AR 1, when you move on to lag 3; you will fit an AR 2 and so on. 

So, what you manage when you reach the true order, you are managed to explain the 

process by an AR l model. So that is the basic idea; anyway let us look at it more in 

detail now. 

(Refer Slide Time: 07:15) 

 

So, this is how you would fit this is a procedure that you would follow when you have to 

fit successively increasing orders AR of that is order in the sense the auto regressive 

models where you do not have to worry about the PACF concept itself, you just say well 

I am going to do a trial and error I am going to fit an AR model of successively 

increasing orders and keep track of the last coefficient and essentially the value of t after 

which you start seeing the last coefficient that you have included; turning out to be 

negligible you say I kind of hit the true order because the inclusion of any further order 

has not helped in any significant way that is the idea. 

But there is a premise underlying this; we need a theoretical backing to this is at what we 

are claiming here is; if the model or if the process is of some order let us say third order 

and I fit a forth order AR then the extra coefficient that I have included should 

theoretically turn out to be 0; that is a premise on which this method works the 

successively increasing order method works, it claiming that as I successively increase 

the order and when I hit the correct order and I go beyond that then the extra terms that I 



have included do not contribute at least theoretically do not contribute or you can say 

practically do not contribute in a significant way. 

So, we need to prove that theoretically although I am not going to prove that here, it is so 

difficult to prove, but I will state the result; the result is when an AR p model is fit to a 

process of order p naught. 

(Refer Slide Time: 09:12) 

 

Then the additional coefficients that you have included; additional meaning in excess of 

the true order, they all turn out to be 0; how do you prove this, well you can in one way 

you can prove by setting up the Yule Walker equations and show that they turn out to be 

0 taking into account the fact that underlying the process is AR of order P naught right 

when we say in the for example, if I say P naught is 1 that is the underlying process is the 

first order AR and I fit let us say a second order and so this premise here the underlying 

philosophy or the result says that the second coefficient of this AR to model is going to 

be 0. 

What is the models symbolically v k is phi 2 1; v k minus 1 plus phi 2 2; here we are not 

using the coefficients ds because generally we reserve the notation d for a given AR 

process, here we are trying out different orders so as to keep track of the different orders 

we introduced this phi notation, this is fairly conventional in time series literature to use 

this notation phi. So, the first subscript here denotes the order the time fitting and a 

second subscript here denotes the coefficient.  



So, I am fitting a model of this form, when I say I fit a second order AR and what this 

result claims is if the process is first order AR then phi 2 2 is 0, if this is how do you see 

that; what you do is you set up the Yule Walker equations right for phi 2 1 and phi 2 2 

correct, so, what would be the Yule Walker equations. So, we can go back to the Yule 

Walker equations that we had here for example, in this here we have d 1 and d 2 in place 

of d 1 and d 2 you can have minus phi 2 1 and minus phi 2 2 right. 

(Refer Slide Time: 11:28) 

 

What would be the value of d 2; let us say if d 2 is 0 then phi 2 2 is also 0 for an AR 1, 

the equations that you setup in Yule Walker equations are fairly generic; for a generic 

AR process, but if you are given that the underlying process is AR 1.  



(Refer Slide Time: 11:59) 

 

So, from this equations here what is a value of d 2; this generic solutions symbolic 

solution. So, d 2 would be you; you remember Cramer’s rule when you want to 

selectively estimate coefficients you can Cramer’s rule right, what is Cramer’s rule by 

the way, to replace it; one of the columns the corresponding column with a right hand 

side and then of course, then you always have the determinant in hand. 

(Refer Slide Time: 12:53) 

 

So, the determinant is 1 minus rho 1 square which appears in the denominator for d 2; 

what about the numerator. 



Student: Rho 1. 

Rho 1 square minus rho 2 or we can in order to connect it with the PACF, we can say it 

is a rho 2 minus rho 1 square; I am using a different notation here; it is a subscript it 

should be at lag 2, but you should understand. Now this is a generic solution for fitting 

an AR 2 model 2 any process; if I fit an AR 2 model to any process this is the value of d 

2, until this point we have not made any assumptions on underlying process. 

If the underlying process is AR 1 then you would want to ask what is the value of d 2 

which is nothing, but your minus phi 2 2; they are the same except with a difference of 

sign. So, if the underlying processes is AR 1, what is a value of d 2 why; because if the 

underlying process let us say is a first order with some coefficient d 1 naught right. 

(Refer Slide Time: 14:07) 

 

So we have said P naught is 1 let us say the coefficient is d 1 naught; this is how the 

underlying process involves. Therefore, what would be rho 1, so this implies rho 1 is 

minus d 1 and rho 2 would be d 1 square; sorry d 1 naught here d 1 naught square. So, 

you plugin this values; theoretical values into your d 2 and you can straight away see that 

this extra coefficient that you have included in excess of the true order as turned out to be 

0. This is not co incidental, you can show this now for any AR process of order P naught; 

if you fit a model of order p to a process that is being generated by P naught then the 

excess coefficients are going to be 0; that is the base idea and that is also the basic idea 

for using PACF. 



So, hopefully now at least you are convinced by way of example that the excess 

coefficients turn out to be 0. In fact, what you should go back as a simple excise and do 

is set up the Yule Walker equations for an AR 3 model; model would be AR 3 fix the 

process to AR 1 for the same process first order AR; fit an AR 3 model and see if the 

third coefficient also that you have included it turns out to be 0. Now of course, as I said 

you can actually estimate AR models of any order using Yule Walker equations, but 

there is an additional benefit of this approach of fitting AR models of successive order, 

which is that you can come up with the recursive way of estimating the auto regressive 

models of increasing orders; you do not have to solve the Yule Walker equations all over 

again. 

So, if I have for example, worked out the estimate of a first order AR; for a given process 

and I want to now fit an AR 2 and I want to see if AR 2 is better suited than AR 1 then I 

do not have to necessarily solve those 2 equations that we saw earlier all over again, I 

can use a recursive relation and this supplies to any order, if I know the coefficients of 

the AR model of an order p then the coefficients of an AR model of order p plus 1 can be 

computed recursively and that was a algorithm given by Durbin and Levinson and today 

it is known as the Durbin Levinson’s algorithm. 

(Refer Slide Time: 16:57) 

 

So, what you do is you start of by fitting an AR model of first order and that that is no 

big deal it is nothing, but the optimal estimate even from a least square few point or a 



Yule Walker equations view point approach; the optimal estimate of the coefficient is 

rho at 1 the ACF at lag 1. Now the coefficients of AR models of successive orders that 

you have that is increasing now second order third order and so on; it can be computed 

recursively using the equation that is given on the screen; that is the recursive relation 

due to the due to Durbin and Levinson.  

So how do you work this out; what it says is if you have an AR model of order p; first 

you estimate the last coefficient of the next higher order model; do not get confused here, 

this is an AR model of order 2. 

(Refer Slide Time: 17:57) 

 

What you would have estimated is an AR model of order 1, you would have estimated 

this phi 1 1; v k minus 1 plus some v k do not get confused between these 2 e’s; they are 

actually different. 

So focus on the coefficients here; you would have estimated this and now you want to 

estimates phi 2 1 and phi 2; 2 and the algorithms says you can do it a recursive manner 

without having to solve the Yule Walker equations all over again and what the algorithm 

says is start off by estimating phi 2 2; once you are estimated phi 2 2, get the estimate of 

phi 2 1; do I need phi 2 1; yes if you want to estimate if I want to estimate an AR model 

of order 3 and so on, but if I have decided to stop and I just want to know the order then I 

do not need those other coefficient, but typically we would need because once we have 

hit the true order then you may want to actually know the remaining coefficients. 



But typically we want to know the remaining coefficients of the previous model for 

example, here for this process we have just now shown that if the underlying process is 

AR 1 phi 2 2 will turn out to be 0 then what is the correct model order 1. So, I have to go 

back and use phi 1 1; I should not use phi 2 1, that is a very important subtle point to 

remember. Once I have hit the true order; I should work with the previous AR model 

because it is says you have crossed the line and realize that know that there was the line. 

So, you go back to that line and then use the coefficients there, in other words here if you 

discover the phi 2 2 is 0. In fact, you cannot stop at phi 2 2 being 0, it may be just that 

one coefficient can work out to be 0; for some processes. You have to make sure that 

persistently phi 2 2 and then phi 3 3; all when you have to move on to AR 3 and check 

that phi 3 3 is also 0 and so on; at least until the few lags; then to come back and say 

what is a first time I cross the line and I cross the line here in this example at 2. 

So, I go back to first order and use phi 11 for my model; you cannot use phi 2 1 because 

that is assuming that you are working going to work with AR 2. Theoretically phi 2 1 

may be same as phi 1 1, but practically it would not be because what happens is in 

estimation depending on how many parameters you are including in your model; 

estimates will change and so will the errors. So, therefore, you have to go back to the 

previous model and then work with that, so that is the idea. 

So, if you look at the equations carefully what it does it estimates phi 2 2 first and then 

the second relation there allows you to estimates phi 2 1; when you are done with that 

and you want to move on 3; third order AR then you estimate phi 3 3 first with the help 

of phi 3 3; you would estimate phi 3 1 and phi 3 2 and so on. So, as an example; I do not 

know if I have; so let us I will come back to the PACFs. So, as a keep a side PACF fact; 

let us look at how would you estimate given phi 1 1, how do you estimate phi 2 2. 
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So, go back to your Durbin Levinson’s algorithm; if I am given phi 1 1; I already know 

from the previous discussion that phi 2 2 is essentially this. We have already solved for 

it, we did not use the recursive relation at that time; we solved a Yule Walker equations 

all over. Now let us see if the Durbin Levinson’s is actually given me that. So, if you 

look at the relation there, it says 5 f e at p plus 1 comma p plus 1 that is phi 2 2; p is 1 

would be rho at 2 in a numerator, the first time is rho at 2 minus how many terms do you 

have in the summation 1 and that happens to be phi 1 1; times rho 1, but phi 1 is already 

rho 1 right. So, you have rho 1 square and in the denominator you can straight away see 

you have 1 minus rho 1 square. 

So, you do get that right of course, this algorithm has been proposed and verified many 

times within theoretically you derive and you can also see that it allows you to derive phi 

2 1, what would be phi 2 1; it says phi 2 1 is. So, let us writes for phi 2 1 using the b l 

algorithm without solving the Yule Walker equations; what do you get for phi 2 1; phi 1 

1 minus. 

What you get, why this so difficult. 

Student: (Refer Time: 23:16). 

Sorry phi 2 2 times phi 1 and you should verify, if indeed you get this as the answer we 

are just left it at in terms of phi’s, you can substitute for phi 1 1 and phi 2 2 and see if 



you indeed get the same from the Yule Walker equations right, it is a very simple 

exercise and this is now the algorithm also that is used to estimate the PACF coefficients. 

How, because there is a strong connection with this approach and the PACF and what is 

that connection as I said earlier and even previously; the last coefficient if I want to 

estimate PACF at lag l then I fit a AR model of order l and plug out the last coefficient. 

So, which means phi 2 2 is nothing, but the PACF at lag 2 phi 1 1 is; obviously, the 

PACF at lag 1; PACF at lag 3 would phi 3 3 and so on right. Now if I want to compute, 

so this proof itself I am avoiding, but I think you would have seen by now in the sense 

when you setup those equations for PACF; computing PACF and you compare with the 

successively increasing orders methods, you will be able to prove very easily that the last 

coefficient is nothing, but PACF where inventively you can look at it this way, when you 

look at this model what is phi 2 2 measuring. 

What is actually phi 2 2 measuring, it is measuring the impact or influence; linear 

influence of v k minus 2 on v k in presence of v k minus and that is what PACF is also 

trying to do; I mean I just giving you a very strong qualitative proof here that this phi 2 2 

that you are looking at in an AR 2 model is actually measuring the linear influence of v k 

minus 2 in presence of v k minus 1; phi 2 1 is not measuring the linear influence of v k 

minus 1 on v k directly it is directly doing, but it is not PACF at lag 1. It is definitely 

measuring the soul influence of v k minus 1; on v k given the conditioning variable being 

v k minus 2, but that is not PACF at lag 1 PACF at lag 1 is nothing, but ACF at lag 1. 

So, you have to understand the notion of PACF clearly the PACF is nothing, but the co 

relation or the measure of linear influence between v k minus l and v k; conditioned on 

all intermediate observations not any other future observation. 
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So, in other words, if I move to a third order; I would have phi 3 1 and phi 3 2 and a phi 

3 3 right plus e k. So, when I move to the third order model you cannot say phi 3 2 is a 

PACF at lag 2. Obviously because PACF at lag 2 is only looking at discounting for the 

effects of v k minus 1, it is not discounting for the effects of the other sample; only the 

intermediate once because it is looking at the time chain. So, phi 3; 3 is now measuring 

how much v k minus 3 is directly influencing v k; in presence of v k minus 1 and v k 

minus 2. So, that kind of convinces you that indeed the last coefficient of the AR model 

has to be the PACF. So, using this connection and the Durbin Levinson’s algorithm; now 

we can compute PACF in a very recursive manner computationally efficient manner yes. 

Student: (Refer Time: 27:18). 

Student: (Refer Time: 27:22). 

Ok. 

Student: (Refer Time: 27:26); that means, p is 2. 

P is p is 1 it depends on where you are; if you are fitting if see in the first step you 

assume that you are fit in AR 1 right. So, the coefficients of the AR p model of orders; I 

see p greater than or equal that is the confusion that you have. So, you look at it this way 

disregard the statement p greater than or equal to their; sorry for the confusion, the way 

you use the recursive relations is; it says if you have coefficients of AR p model then 



how do you estimate AR p plus 1. So, I will make that small correction I understand the 

source of confusion; is it clear. 

So, I will take away the p greater or I will just say of orders greater than or equal to 2; 

any other question, glad you are watching the notes quite closely right. So, now with 

these connection, we have a recursive or a computationally efficient algorithm for 

computing PACF and that is what you are PACF routine in r or any other package 

ideally use as it use as a d l algorithm, not only this does this d l algorithm give me 

computationally efficient way of computing PACF, but even for estimating the AR 

models, the d l algorithm was devised in general for estimating any AR model of a given 

order by knowing the AR model of the previous order. 

So, it is does not bind itself to PACF, PACF happens to be only a small piece of 

information that, but an important piece of information that you are extracting out of the 

AR model. So, one keeps track when you want to compute PACF, one keep track of this 

these chain of coefficients. 

So, that is the generally and widely used PACF algorithm for recursively computing 

PACF; if you have gone through this I am going to skip. So, that kind of brings us to the 

conclusion of the discussion on auto regressive models, we have discussed what an auto 

regressive model is that is how does it take birth from the linear random process and it 

takes birth whenever we assume a certain kind of parameterization for the impulse 

response coefficient and that parameterization is nothing, but an exponentially decaying 

one and parameterization of I r coefficients is a same as parameterization of the ACF as 

well. 

So, you might as well say an auto regressive model is that whose ACF is parameterized 

to d k exponentially and of course, another way of looking at auto regressive model of 

orders p is that any information that you give beyond p lags is not going to make any 

difference in my forecast; that is another way of looking that is from prediction view 

point and there are several advantages of working with AR models it gives raise to linear 

predictors unlike M A models, where I have to go through this additional step of figuring 

out what the shock wave is in order to complete the forecast. 

But then order determination requires a computation of PACF, although you can say it is 

PACF what you are actually doing is as we have discussed just now; you are fitting AR 



models of successive orders and you are computing it in an efficient way that is all you 

are doing, but conceptually PACF is a conditioned co relation; conceptually this 

approach of fitting successive orders and PACF are quite different, the notion of 

conditioning there appears, but now you can see the notion of conditioning amounts to 

actually fitting linear model itself. 

So, for example, here and I am actual when I am computing PACF at lag 2; what I am 

actually doing is multiple linear regressions. I have many regressors but some specific 

regresses when I am looking at PACF and then we discuss the issues of stationarity 

which we said that even though the underlying process as a non stationary causal 

representation, I can give a stationary non causal representation, but we will stick 

ourselves to the causal models. And hence forth when I say causal AR model, you should 

understand it is stationary and then we talked about the Yule Walker equations which are 

central to the estimation of AR models and the computations of the PACF. 


