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Now this is where we would like to slightly digress and briefly review the concept of 

linear systems theory for the deterministic world, so that you understand the parallels.  

(Refer Slide Time: 00:28) 

 

Now before we do that we have already done one step, another step here where we 

introduce the transfer function operator for this process, it happens to be 1 over 1 plus d 

1 q inverse and essentially now I can think of v k being driven by this H, which is a first 

order autoregressive process right. So, straight away you get this interpretation that white 

noise is saying input that is driving v k, it is only an interpretation and most importantly 

you should remember that these white noises endogenous remember right. So, that is the 

thing. 

Let me also write here. So, that you tell yourself once again that this is (Refer Time: 

01:22) external signal it is an internal part of v that is driving itself, we have no other 

choice if you look at it intuitively we are saying I do not know what caused v and I am 

still supposed to build a model; then the only way I can explain a person who is talking 

to himself or who is just enjoying, who is excited is self excited there is no other person 



who is telling something to this person or causing this person to be excited and so on. So, 

the only way I can explain is something internally is exciting this process. So, therefore, 

this kind of representation does make sense in a qualitatively. 

Now, this representation itself of some signal passing through a linear filter to produce a 

response is not new in the linear systems theory world this is fairly well known and it is 

important to draw some connections with the deterministic world, so that some of the 

terminology, some of the requirements, some of the concepts such as spectral density, 

frequency response function, impulse response and so on, straight away can be borrowed 

and applied to the stochastic world. 
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So, if you take an LTI deterministic process, one finds the same kind of representation. 

To distinguish the deterministic process from the stochastic process we will use the 

notation G; and in a deterministic world there is an input that is I know the cause and I 

know the response. So, Y is the response and U is the input or the probe signal or 

whatever and LTI stands for linearity and time in variance; for those of you who are 

familiar with the linear systems theory, you should recall that any LTI system almost all 

just bearing very few peculiar ones, you could by virtue of the property of linearity and 

time in variance, you could write a mathematical relation between the input and output as 

a convolution equation, which can also be written this way where n runs from minus 

infinity to infinity. 



Now, this is in some sense of fundamental equation that is central to linear systems 

theory, it is you can say the mother of all descriptions of linear time in variance systems 

that you would encounter, although there is another form that is very popular which is a 

difference equation form, but will talk about it a bit later. In fact, the form that you see 

the autoregressive form is not straight away in this frame work, it is actually in the 

difference equation world, but very soon we will see that a difference equation form is 

born out of the convolution form under some conditions, many text books may not 

present the linear systems theory in this way, but it is a very very important prospective 

that one should have of the difference equation form. 

So, let us look at this convolution equation a bit more closely, this is called the 

convolution form because it is not a direct product you can see that there is a convolve 

convolution of g with u or u with g whichever way you look at it, but another way of 

looking at this equation is that the output is a weighted sum of the past inputs; past 

present and future to be more exact of course, you can ask why are we including future 

inputs we do not have to we can restrict the summation from zero to infinity, but we will 

retain this non causal nature because it is useful one for theoretical analysis, two there 

are systems that are non causal; may not be the a man made processes that we see, but 

human beings for example, the behavior is non causal. We imagine something to be 

happening in future and react now right. So, that the non causal behavior in the traffic 

lights we know that the signal is going to turn from red to green already you start 

honking 10 seconds before that is a non causal behavior. So, there are many processes 

that are non causal therefore, we will retain the future inputs as well. 

Now, always remember the convolution equation as being a linear sum of the past 

present and future inputs and it really helps and the other point to keep in mind is which 

is very important this sequence g the coefficients of g they are called impulse response 

coefficients, they are called the impulse response coefficients IR stands for impulse 

response; what do you mean by impulse response? If I were to give or excite the system 

with an impulse signal discrete time impulse we are not talking of dirac delta functions a 

kronecker delta function which is a we assume it to be unit impulse. 



(Refer Slide Time: 07:15) 

 

So, this delta n or delta k whatever you want to denote that k is just dummy variable, this 

is the kronecker delta it is non zero in fact unity, if it is a unity impulse function at k is 

equal 0 and as well, like the acf that we have seen for a white noise. When I excite the 

system with this impulse I get this response g, and you can see that straight away by 

substituting here replace u k minus n with delta or even here does not matter in both 

equations you see straight away that why k is nothing, but g k . 

Now, this impulse response based description of a system is very very widely used in 

filter design, in stability analysis, causality analysis everywhere and the all the properties 

including the prediction of the linear system can be derived by just knowing the impulse 

response coefficients that is the beauty of an LTI system. So, you see how convenient 

life is the moment we assume linearity and time in variance. When we talked about 

stationary processes we only talked about linearity, but we dint talk about time in 

variance or did we. The linearity here how is linearity defined here in deterministic 

world? So, now, we are drawing parallels lowly between the deterministic world and the 

stochastic world, the linearity here is defined in a mathematical sense that is the if I have 

two inputs producing two outputs, then a super position of the inputs should produce the 

same super position of the respective outputs that is very clear. 

But did we define linearity that way or have we not at defined linearity in the stochastic 

world, did we define linearity yet? We have just talked about linear predictors, but we 



have not talked about linear models here, but we can do so. How can we do that now? 

Earlier it was not possible if you consider the signal as is it is not possible to think of 

linearity, when we talk of a system and the linearity typically we are talking of the 

mapping between the input and output and when I look at it is signal alone in the 

stochastic world, there is no input. 

However, we have said that we have we can give this interpretation, when I am con 

when I am living in the linear predictor world I can give this interpretation that e k is 

driven by an input fictitious input whereas, this is not fictitious and this is deterministic 

whereas, this is stochastic. I know exactly the values of the input at a very instant in time 

in the deterministic world whereas, I do not know and maybe I do not even bother so 

much as much as I worry about it is statistical properties. So, there are parallels and they 

and get there are very strong differences, but we can use some of the concepts. 

So, now we can say that all linear models that I think of, may has the same can we given 

the same linear definition as we see here in the deterministic world, but what about time 

in variance? 

So, the time in variance in the deterministic world translates to stationarity. So, you see 

what we are doing is whatever we learn in the deterministic world most of it now we 

translate that to the statistical properties. So, here e k is a an input, but it is white noise 

has an impulse like behavior and v k and of course, e k is stationary and because h is 

linear under some conditions on this coefficient d 1 v k is stationary that is more or less 

the idea of time in variance. 

So, for a linear stationary process we may be able to write a model like this, we will not 

write that write now, but we may be able to and we will in fact, eventually write a model 

of that form, when we do write a model of that form then we can give similar 

interpretations to the coefficients of such a convolution equation, we may call that as the 

impulse response sequence, although it does not make so much sense because what do 

you mean by e k impulse response in the stochastic world right because e k can be an 

impulse. 

However, we can give some interpretation of those coefficients as impulse response 

coefficients will come that and remember whatever I am saying right now is based on 

analogy, but the actual formal way of arriving at a linear random process the conditions 



and so on were worked out independently of this, people did not actually developed 

models for linear random processes by starting from deterministic world do not think that 

way, you just turned out that they started off in a very rigorous way and it ended up 

being so strikingly similar to what you see in the deterministic world and it make sense. 

I just now said for the deterministic world knowing the impulse response sequence 

amounts to knowing everything about the system, what I mean by everything is you can 

predict the responses system to any arbitrary input, you can determine stability property 

of the system, stabilities have very very important property right what does stability 

mean in the deterministic world at least in the linear world deterministic world? Are you 

familiar with the definitions of stability? 

Student: (Refer Time: 13:28).  

One is bounded input bounded output what about the other one. 

Student: The system is (Refer Time: 13:35). 

can you extend that; there are essentially two forms of stability that one encounters in the 

linear deterministic world, one is the asymptotic stability which is when you perturb the 

system that is the system is perturb by some non zero initial condition, then you leave it 

on it is own it should return to it is equilibrium, this we call as a stability based on the 

free response natural response, you just pull the pendulum for example, or some for 

some reason the pendulum has a non zero displacement and that is it you leave it, it 

should return to it is equilibrium. If it does we say it I s a asymptotically stable, it is 

based on the free response of the system then there is another stability which is called the 

BIBO stability; bounded input bounded output stability not the BIBO that you see on 

water bottles ok. 

BIBO stability which demands that if I apply a bounded input then I should get a 

bounded output; that notion is based on the force response to one stability concept is 

based on the free response and other stability concept is based on the force response. 

Now without going to too much into the theory generally speaking for a large classes of 

linear systems both BIBO stability and asymptotic stability are equivalent, except under 

some conditions they will not go into that, so we can work with BIBO stability; for now 

there are systems for which asympto there are systems that are not asymptotically stable, 



but are BIBO stable; it is possible, but we will not worry about such systems as of now, 

we will assume that the system is both asymptotically and BIBO stable. 

Now, we turns out that stability basically what stability usually means is, the output 

should not run away with time right more or less that is the notion that stability means 

and in fact that is exactly what BIBO stability implies. When the input itself is bounded 

why the output not run away with time and it turns out that this requirement translates to 

necessary and sufficient condition on the impulse response sequence that it should be a 

absolutely convergent, do not relate this absolute convergent to the that of the ACVF that 

is a different condition, but we will see a similar condition in the linear random world as 

well; when we write the convolution equation for the linear random process, we will see 

that this is a requirement and this requirement in return in for the random process 

guarantees that the linear that the autocovariance is absolutely convergent. 

So, there is a connection, but the connection is somewhat indirect; for now you should 

remember that stability for the deterministic world amounts to saying that the output 

should remain bounded, which is one of the features of a stationary process right if I 

have a random process whose values just grow with time, there is no way you can think 

of it has being stationary. So, it is a necessary condition not fully sufficient, you 

remember this stock market index the series was running away with time, but then there 

are other series which were bounded. Not all bounded once are stationary remember that, 

but if the series is unbounded if the signal is unbounded then clearly it is not stationary 

therefore, this necessary condition; in the case of deterministic world this both necessary 

and sufficient for stability because it I s a deterministic world. 

In the random linear random world we will come and we. In fact, we will come across 

exactly an identical condition on the impulse response coefficients of the model, which 

will then guaranty that the series stationary, then under the autocovariance function is 

absolutely convergent. So, you should understand then the parallels also and then of 

course, there is also this requirement if you want to restrict yourself to causal processes, 

then it is necessary that the impulse response one of the ways of stating that the 

processes causal is to require that the impulse response is zero at negative times; that 

means, even before I excite the system at an impulse if it response then obviously it is 

non causal; children are like that they anticipate that parents are going to scold starts 

screaming upfront itself, that is a non causal behavior right? Causal behavior is after the 



scolding has been and then you starts screaming or just at that moment I do not know 

about students though, but that is what causality here translates to that g k should be 0, 

for all k less than 0 this is what causality means and one can impose a similar condition 

in the linear random world as well. 

Then there are two important sub classify I mean children of this model; this is you can 

say the model for the linear time in variance system; from here take both two different 

classes of models, this is by the way called in general and infinite impulse response 

model because you assume that the impulse response exist at all times and this itself tells 

you that you are restricting yourself if you are if you are restricting yourself to stable LTI 

system, then you are restricting yourself to systems whose impulse response decays with 

time. So, coming back to the point form this model you can see two different classes of 

models taking birth known as the finite impulse response model and the difference 

equation model call the FIR model standing for finite impulse response model and the 

other one being the difference equation model. 
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They straight away do not they are not born just like that, you have to make some 

assumption on the impulse response. Now this is the thing that you will find somewhat 

missing in many texts on statistical signal processing or stochastic processes; to point out 

that whatever we call as moving average and autoregressive models are not just born like 



that, you do make some assumptions on the impulse response coefficients of the linear 

random model. 

(Refer Slide Time: 21:01) 

 

Now, let me actually show you the linear random process model; this is the model as you 

see on the screen, you see there is a striking similarity for the definition of a linear 

random process, we will talk about this F I R and difference equation models when we 

talk of moving average and autoregressive models respectively.  

(Refer Slide Time: 21:22) 

 



But it is useful to at least before we adjourn be familiar I have used an h subscript n, but 

we will use this notation as well h index with an; both h subscript and then h in extend 

mean the same thing. So, what you see on the screen is the definition of a linear random 

process. Look at the difference in the deterministic world we stated or we assume the 

process to be LTI, and you can show all the way of not proved, you proved you can 

arrive at this equations starting from linearity and time invariance whereas, in the 

random signal world, we are not defining linearity and time in variance upfront; we are, 

but even with that we are no we will not be able to necessarily come with this straight 

away, you have to go through some formulization and then arrive at this. 

So, in general what you will see in texts a linear random process is itself defined this 

way; what is the requirement? Any process that can be represented as white noise 

passing through a filter and LTI filter is essentially a linear random process, subject to 

two conditions: one condition is that this impulse response coefficients h that you see 

now should be absolutely convergent; in the deterministic world that was required for 

stability, in the random world you can say that this requirement of absolute convergence 

of h is you is necessary in for many reasons, one of the reasons is that the summation that 

you see on the right hand side should converge it should converge to what to a random 

variable, what kind of if you were to look at all times it should converge to a stationary 

random process, more over this requirement that h should be absolutely convergent also 

guarantees that the autocovariance is absolutely convergent; which is the condition the 

foremost condition that is required for us to develop a model like this. We will talk about 

this conditions and the moving average model tomorrow and then we will continue with 

the discussion on autoregressive models subsequently, but you should see the this 

condition here on absolute convergence and the other condition that I mention there is a 

two conditions: one is on absolute convergence and the other one is that the driving force 

is a Gaussian white noise. 

Now, that you will find variations across text; we write this we require that e k is 

Gaussian white noise, which is assumption made in many text books. In many other text 

books the requirement on e k is that it should be IID, independent and identically 

distributed; remember white noise only requires only focuses on the second moment up 

to the second moment, it says it should be uncorrelated whereas, IID requires that the 

driving force should be independent now; however, a Gaussian white noise is also an 



IID. So, we are not really in deviation from the general requirement, so we will assume 

that the driving force is actually a Gaussian white noise.  

So, although I have written white noise we will assume it to be Gaussian white noise and 

the stationarity that we are talking about is still the second order stationarity only; that 

means, the mean should be bounded and should be invariant with time, variant should be 

bounded and invariant with time and autocovariance should only be a function of the lag 

l. 

So, those are the conditions that we imply by a linear by stationarity here, we will talk 

more about this in particular the moving average model and it is connections with the F 

L R model and so on then talk about an important concept known as inevitability. 


