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Good morning. Let us actually continue our discussion on the Autocorrelation Function 

of auto regressive Processes. Through our quick discussion and the derivation based on 

using the autocovariance generating function we were able to show that the 

autocorrelation function of an auto regressive process diced on exponentially unlike that 

of a moving average process, in which case the ACF diced on abruptly right after the lag 

equalling the order of the process. 

So, what will do now is we will actually derive the ACF in the traditional way. The 

autocovariance generating function method is in principle suited for all linear random 

processes, but when it comes to auto regressive processes it is better to stick to the 

traditional method wherein we will derive set of equations that are very classic in time 

series analysis; these are known as Yule Walker equations. We have I briefly mention 

those few lectures ago. The autocovariance generating function is ideally suited for 

moving average kind of processes. 

(Refer Slide Time: 01:31) 

 



So, let us look at this screen now where I show you how to derive the autocovariance 

function of an auto regressive process. In particular, for the example of AR 1 now I have 

written it this way, but there is an implicit assumption that the mean is 0. We should first 

establish that the mean is 0 and then only write this way. 

(Refer Slide Time: 01:59) 

 

So, let us go back to the process itself which we know is described this way. Now I have 

chosen minus d 1, there is no particular reason at the movement later on you will realize 

that it is nice to have the same kind of science in the numerator and denominator of the 

transfer function operator and that is why I have chosen minus d 1, but different text 

books may used different notation. 

So when you look at this expression here, it is not so obvious that the process v k should 

have 0 mean. First of all it is not so obvious as to why it should be stationary for all 

values of d 1. Of course, we have restricted ourselves to the case where the magnitude of 

d 1 is less than 1, and now we have to figure out what the mean is. First of all will have 

to guarantee that when d 1 is less than 1 in magnitude it is stationary, and then may be 

proceed to the calculation of mean. It may be a mistake to assume that expectation of v k 

and v k minus 1 are the same up front. I know e k is stationary, but there is no guarantee 

necessarily that this is stationary as well. And this is a habit that you should get in to; you 

should not assume by default that any equation of this form will necessarily generate 

stationary v k. 



So, one of the ways to arrive at the mean of v k is to recast this into the general linear 

random process form. What is the general linear random process form? This is a 

convolution equation that we had written couple of lectures ago and running from like; 

let us restrict ourselves to casual processes. So, this is the convolution equation that we 

had written. Obviously, the AR 1 equation the governing equation is not a directly in this 

form. How do we catch this equation into this form? There are two different ways one is 

to write recursively; to recursively substitute for v k minus 1, the other is to use a transfer 

function operator approach or just a shift operator approach. 

So, this we know can be written as 1 plus d 1 q inverse v k, operating on v k produces v 

k-this is we know. Now may be for the benefit of people who cannot see below this I am 

just going to write here. So, this is the equation that we have; we can now use a long 

division approach to arrive at this form, although that is not the technically correct way 

of doing it but it works. The technically correct way of arriving at this equation is a lot 

more regression, one has to be careful. You know you have to start off with this 

assumption and then equate the coefficients on both sides and so on, but will not do that. 
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What will do is we will just use the approach that works so that we can write v k as 1 

plus d 1 q inverse rise to minus 1 operating on e k. As I will repeat this is not the perfect 

way of doing it technically the correct way of doing it but it works, you are not really 

committing a claim by adopting this method but it is ok; it is still not be perfect way of 



doing it. Anyway, so what to be obtain here? When I carry out a expansion series 

expansion of this what is the series that we obtain; 1 minus d 1 q inverse plus d 1 square 

q inverse square and so on right minus d 1 cube q rise to minus 3 and so on operating one 

e k. So, it is never ending series operating on e k. 

Now, do you see that we have obtained this form of an equation, is it clear; so we can 

now write it in the summation form. Now of course the other way of writing this is 

remember we can also write this as h n e k minus n that is the summand itself we can 

write as h n e k minus n. So, if you were to write in this fashion what do you see as h n? 

Now you just have to compare the equation that you have there with the summation; 

minus d 1 rise to n, is it correct? Everyone is in agreement with this right fine. So, v k 

has been recast into the standard convolution form with the coefficients given as above 

here. Now the condition of stationary if you recall for a linear random process requires 

that the coefficients h b absolutely convergent. 

What does that translate to on d 1? Not d 1 less than 1 let us exactly the requirement. So, 

at least they have proved that if mod d 1 less than is less than 1 you will get stationary 

and also that is a requirement, in fact we have proved both ways. Now what can you say 

about the mean of v k given that mod d 1 is less than 1. So, we have guaranteed now v k 

stationary either now you can go back to this equation here and assume that the mean of 

v k and v k minus 1 are the same. Am I right you can assume that both are the same, 

what is answer that you arrive at for 0? Alternatively, you can simply evaluate 

expectation here and your summing up 0 mean random variables, you should expect 0 

mean right. So, these are two different ways of arriving at the answer, but the n result is 

mu v is 0. 

Now we are safe to begin with this expression here. So, there was so much behind that 

expression here, that is why one has to be really careful in now time series analysis 

because very quickly things can actually slip out of here hands if you do not verify 

certain things. Fine, now we proceed further as I have shown on the screen so you see 

that in place of v k, what I have done is actually I have replaced v k with the governing 

equation. 
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In other words we have written v k as minus d 1 v k minus 1 plus e k times v k minus l, 

all I have done is our just replaced v k with that. I have not replaced v k minus l for a 

reason, you know if you start substituting for v k minus l as well then the equations 

become a bit messy. So, we will only replace v k with its governing equation so that you 

get minus d 1 sigma at l minus 1; remember they expectation of v k minus 1 times v k 

minus l how many observations apart are there, they are l minus 1 observations apart or 

instants apart sorry. 

Plus you have a cross term here, now the second term is not any autocovariance that we 

have seen before it is the, what is it? It is a cross variance good. So, it is a cross-

covariance between e k and v k minus l. Now we have not defined formally cross-

covariance, but that is no big deal we can straight away define what we mean by cross-

covariance. 
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So, when I have two sequences v 1 and v 2 or two you can say discrete time random 

signals then the cross-covariance between them is defined as expectation of v 1 k minus 

mu 1 times v 2 k minus l minus mu 2. So, this is your sigma v 1 v 2 at lag l; this is the 

covariance. Again at the heart of this is covariance, this is nothing mu here except that 

now we are correlating observation at the k-th instant of one series and another 

observation of another series located at k minus l. We assume that v 1 and v 2 are jointly 

stationary, that is a very important requirement otherwise your cross-covariance is not 

function of lag alone; it would be a function of k and k minus l. So, that is an implicit 

assumption, but a very important assumption. 

Mu 1 is the mean of the first signal and mu 2 likewise is a mean of v 2. Now here the 

ordering of subscripts does matter, you have to be very careful because there is essence 

of direction here. Through this we are asking how much does v 1 k influence v 2 k minus 

l or vice versa, we do not know that direction but certainly we know that we are looking 

at the k-th instant of one series and k minus l th instant of another series; l can be again 

here positive or negative or even 0. When l is 0 it is nothing but cross-covariance, your 

classical cross-covariance that we have discussed earlier. 

And obviously, the cross-covariance function is an a symmetric function; that means, the 

way v 1 at this instant influences v 2 at a later instant or even is influenced by the past of 

v 2 is not necessarily the same way when you change the direction of analysis. So, what 



we mean by this is; sigma v 1 v 2 at lag l is not equal to necessarily sigma v 1 v 2 at 

minus l, whereas the autocovariance is symmetric. So, that is a prime difference between 

the autocovariance and cross-covariance. 

Again you should not forget the interpretation of cross-covariance. What we are studying 

through cross-covariances, how much does one signal linearly influence another signal 

may be now or at a later instant or is influenced by another series in the past. And it is an 

extremely useful measure; you will find this as one of the most widely used statistical 

measures in signal analysis. There is no field where cross-covariance function has not 

been applied and there are many applications in the classical application is in the 

estimation of delays. 

In radar signal processing we know the basic principle right. There is a signal does 

transmitted at one station and the signal actually hits the object that is flying they are and 

then is transmitted back. Assuming under ideal conditions you know there is no that both 

the transmitted and the received signal travel with the same velocity. So, you look at the 

difference in the time of arrival time of time at which you have transmitted and the time 

at which you have received the signal; knowing the delay right you can actually and the 

distance that is probably travel you can know the velocity of the flying object or if you 

know the velocity or the flying object you can figure out how far the object is. 

So, we can do many things, but this is one of the crucial measures used in radar signal 

processing. Not only radar signal processing everywhere where you are interested in 

estimating delays. More over it finds a lot of use in system identification where we 

estimate impulse response coefficients and so on. We will not get into that now. 
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So, the other property that is of interest to us is sigma v 1 v 2 at lag l is sigma v 2 v 1 at 

minus l right, and you should be able to see that. So, v 1 v 2 measures the covariance 

between v 1 at there is at lag l, measures the covariance between v 1 at k and v 2 at k 

minus l; whereas v 2 v 1 looks at the influence between v 2 k and v 1 at k minus l, 

obviously there should be kind of a conjugate symmetry. So, keep these in mind that 

always co-variances are measuring linear influences. 
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Coming back to the problem here now we can write this as sigma e v at lag l. And when 

you right sigma e v at lag l do not forget the interpretations and so on; you should keep in 

mind the interpretation as well as the definition. It is essentially a measure of how much 

e k, how much of commonality linear in a linear sense exist between e k and v k minus l. 

Now, before we proceed further we will restrict ourselves and say that it is sufficient to 

restrict ourselves to non-negative lags, because we are looking at autocovariance it is 

sufficient to theoretically evaluate over one side of the lag axis. So, let us restrict 

ourselves to non-negative lags. Now the one of the main obstacles is this term here. So, 

once we get read of this or once we know how to handle this you can proceed further. 

What you thing is the answer, sigma a v at lag l what is the cross-covariance between e k 

and v k minus l since we are restricting ourselves to non-negative lags; v k minus l is 

either now or in the past, that is the horizon that we are looking at. 

So now, you have to ask; what is the cross-covariance between a shock wave at this 

instant e k, and the generated signal at this instant or in the past. If l is 0? 

Student: (Refer Time: 18:00). 

Two answers; 0 for all lags, greater than or equal to 0, we want to revisit your answers. 

Anybody from the other hall? 

Student: (Refer Time: 18:15). 

And does anybody want to answer what is this value for they are one process at all lags 

greater than or equal to 0. No answer from there. Any from here, any other answer; so 

have you revisited your answer one of you said that it is 0 at all lags greater than or equal 

to 0; what is the difficulty in arriving at this answer I would like to know. Question is; 

what is the influence you can think of it as influence you can think of it has commonality 

whichever where you want to look at. 

Let us look what is a commonality between e k it helps a lot, between e k and v k minus l 

lot of times I see students actually getting into an infinite loop here. So, you start off with 

e k and v k minus l and then you write e k as v k plus d 1 v k minus 1 and then you start 

writing further equations or you keep substituting for v k minus l recursively and then 

you says sir there was not enough time to answer the question. 



Student: (Refer Time: 19:44). 

But, your write just always in mathematics there are this similarities which are they to 

trap you. So, for l greater than 0 your statement is correct right. What about l equal 0? 

Student: (Refer Time: 20:06). 

V k contains influence of v k right, very good, so that see observation that you want to 

make if you want get out of that infinite loop. You have to ask what is v k minus l made 

up of. It is made up of all the past effects or l greater than 0 all the past shock waves and 

by definition e k is uncorrelated with its own past. So, we can straight away right that 

sigma e v at lag l is 0 for all lags greater than 0. You have to be careful; you cannot make 

this statement for negative lags. 

So, now you see why we smartly restricted ourselves for non-negative lags. And at l 

equal 0 what is the answer? At l equal 0 you looking at the covariance between e k and v 

k, but by our own assumption that is a generating equation v k is made of its past plus e 

k. This we have now determined to be uncorrelated with e k. So what you get? 

Expectation of e k times v k would be simply sigma square e, very good. 

So, this is how with clever reasoning you sort out things and proceed further. Now, we 

know that the sigma e v at lag l is this. 
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Therefore I can write and equation here as for l greater than 0 as sigma at lag l, I am 

going to drop the of course I have not use the subscripts. So, we can proceed minus d 1 

sigma at l minus 1 plus we can say that it is sigma square e delta of l, where delta is your 

Kronecker delta function. Of course one sided, even you can use two sided does not 

matter, but this equation itself is valid for l greater than or equal to 0. We will keep 

remaining ourselves of that. 

What is the role of this a Kronecker delta at lag 0 it is a unit function unit impulse, at lag 

0 it assumes a value of 1 and 0 at all over lags. Now, very interestingly if you compare 

the generating equation with the equation that we have here; so let me rewrite sigma l 

plus d 1 sigma at l minus 1 is sigma square e times delta of l. You see a very strong 

similarity between the generating equation for v k and the generating equation for the 

autocovariance. That is the feature or the hall mark of auto regressive processes that is a 

big advantage. It is very easy to compute autocovariances of auto regressive processes; 

because once you are given the generating equation you can straight away write the 

generating equation for the autocovariance. 

Although, I am only showing this for AR 1 process you can extend is argument to other 

auto regressive processes as well. You can see if it was an AR 2 you would arrive at the 

same equation. But have a problem is not yet completely solved we still need the 

expression for the autocovariance. So what we do now how do we proceed from here. 

So, as the first observation which is very important that the generating equation for the 

auto variance is the same at least the homogeneous part is the same as the one for the 

process itself, only the forcing functions are different. And the other prime difference is 

this is the stochastic difference equation, while this is the deterministic difference 

equation you should be careful because sigmas are deterministic quantities. 

So, the forcing function for the process itself is white noise, whereas the forcing function 

for the autocovariances what is it; it is the autocovariance of the white noise itself right. 

In fact, on the right hand side why have we come up with this because it is a 

autocovariance of course we are looking at non-negative lags, but if you keep that a side 

momentarily what you see essentially is white noise is forcing the process to generate v 

k, it is not a covariance is forcing the process to generate its autocovariance. We do not 

see this kind of necessarily a property for moving average, it was completely different 

there. 


