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As you have said by examining the ACF, we can actually draw inferences about the 

series. 

(Refer Slide Time: 00:14) 

 

And that is the purpose of this entire discussion itself and some more discussions to 

come. 



(Refer Slide Time: 00:23) 

 

Before we move on to understanding what are the ACF signatures, it is important to 

interpret ACF properly and also study an important property of ACF which is a non 

negative definiteness. So, let us look at a simple interpretation for the ACF which is 

essentially what we have seen earlier. Remember ACF is a correlation measure and it is 

hard and we know that computing correlation tends amount to performing linear 

regression willing a predictive kind of model. Likewise here when I am looking at ACF 

at a particular lag, what does it mean; it means almost the same, but let us work this out 

in the context of time series. 

Suppose I am given a random signal v k and I am interested in forecasting it in a linear 

sense, I am standing at k and I am forecasting at k plus l and we denote the forecast by 

the hats. Any estimate, any predication that we make are all denoted by a hat because 

after all predication is also an estimate. 



(Refer Slide Time: 01:35) 

 

So v hat of k plus l given v k, we have also written a different notation before v hat of k 

plus l given k. Now are these two notations the same not necessarily, when we write v 

hat of k plus l given k, it is a succinct way of saying that I have information up to k. In 

this here clearly we are saying I am given only v k, I am only given information at this 

instant I do not have any information about the past and I am trying to make a prediction 

of what happens l time instance into the future. 

Suppose I build a linear predictor, I make a linear forecast alpha v k. So, I simply assume 

that this is how the observations are related and now I want the optimal estimate of 

alpha. Then again the optimal estimate of alpha is in the sense of minimizing the mean 

square predication error and that turns out to be not surprisingly the autocorrelations 

because remember, when we solve this problem for two random variables what did alpha 

turn out to be, what is it turn out to be; instead of v v k plus l and v k, we had y and x. 

The optimal estimate alpha was a correlation between y and x, exactly the same result we 

have here.  

So, correlation between v k plus l and vk is nothing, but autocorrelation at lag l. So, this 

is not some new result that has following form the skies, it has already been there with 

us, but in the context of random variables clear. So the autocorrelation at any lag l, 

contains or encodes the predictability inform a predictability or the ability to forecast l 

steps away, using this sample alone. The other day we solved at slightly different 



problem, we said if I use two observations in the past then we had this couple of 

equations which we called as Yule Walker equations; do you remember, when we talked 

about stationarity. There we had two autocorrelations or autocovariance is coming up at 

lag 1 and lag 2. 

Here we are only using single observations even now you can extend this discussion 

likewise based on at example. Suppose I am given v k and v k minus 1 then I would like 

to build a linear predictor, suppose this is a case then what you expect alpha 1 and alpha 

2 to depend on, what properties of the series does it depend on or what statistic does it 

depend on. It is not different from the example that you solved earlier, there instead of l 

we had v k I mean l was 0; I mean in fact may be v k plus 1; there we had v k plus 1 

being predicted in terms of v k and v k minus 1. 

Now, you have v k plus being predicted in terms of v k and v k minus 1. So, what do you 

expect alpha 1 and alpha 2 to depend on? 

Student: (Refer Time: 05:10) 

Auto correalate autocovariance or autocorrelation at what lags. 

Student: l and l plus1. 

Perfect l and l plus one that is it, so once again this conforms a fact that; so linear models 

it is sufficient to know the autocorrelations and to work with autocorrelations as long as 

there in variant with time my linear model does not change and so the process as well 

correct; yes. 

Student: Is that correlation between k and k minus 1 (Refer Time: 05:37). 

K and k minus 1 not in this, that is a good question; that will happen in non-linear model. 

In a linear model it is like a super position how much does v k influence the variable of 

interest, how much v k minus 1, but together they will participate, but not between v k 

and v k minus 1, you will have in your equations sigma at l and sigma at l plus 1, but 

there will not be any sigma 0 per say I mean implicitly the variance does effect, but not 

alpha 1 and alpha 2 (Refer Time: 06:17). So, if you can see in this example d is the 

variance actually effecting yes and no you can say because yes because; it is a part of 

your autocorrelation, but if you look at as a correlation, correlation at lag 0 is any way 1. 



So, one affects anything; so in that sense it does, but yes the answer to the question is 

what is important of the auto what are the important of the autocovariances at lag l and n 

plus 1only; good question, any other question fine. 

So you should remember this interpretation, it helps you in understanding ACF better. 

Now we move on to this main business of recovering the discovering signature here 

actual discovering from ACF signatures; the title is slightly wrong. 

(Refer Slide Time: 07:04) 

 

But what are we trying to discover; the features of the series, the characteristics of the 

random process from the ACF signatures or the ACF signatures and as I said before we 

get into a theoretical study on that there is an important property that the ACF satisfies; 

apart from all the properties that it inherits from correlation symmetricity and all of that 

there is another property that ACF has because it applies to a time series which is that of 

non negative definiteness. 

Now, non negative definiteness does not mean and it should not imply that the ACF is 

always non negative value please. We are looking at the entire sequence of ACF, we are 

not looking; we are not talking about the value of ACF at any lag, we are actually talking 

about the full sequence from you know minus infinity lag to the plus infinity lag 

theoretically and you are saying this entire sequence as to be non negative definite, what 

is a definition of a non negative definiteness of a sequence. 



(Refer Slide Time: 08:20) 

 

Now any sequence is set to be non negative definite, if it satisfies the condition that you 

see on the screen. There is something called positive semi definiteness, positive 

definiteness, non negative definiteness and so on, all of them are related in linear algebra, 

you do come across these terms as well for matrices you say matrices positive semi 

definite, positive definite, non negative definite and so on. For matrices what is a 

understanding if I say matrix is positive definite. 

Student: Eigen value. 

Eigen values are strictly greater than 0, here we are talking of sequences in fact, you can 

actually arrange this sequence in the form of a matrix as we will see in the proof and then 

talk about and then relate the same condition that you see here to the profit, to the 

condition for the non negative definiteness of the matrix; it is one and the same. This is 

more of the do not worry about the proof of this; we will go through the proof, but do not 

worry so much about the proof rather than the fact that ACF is non negative definite. 

Why is this non negative definiteness important, will become clearer shortly and later on 

in estimation theory as well. 

Now, how do we prove that the ACVF of a stationary process is non negative definite? 

The proof is fairly straight forward, what you do is given the series v k; you construct 

another series y which is a linear combination of some n observations of the given series 

and write it in a vector form as you are seen where a (Refer Time: 10:01) or combination 



coefficients. We want to prove that the ACVF of this process v k is non negative 

definite. 

What is a requirement, if you go back to the definition it says that, this summation 

should always be greater than or equal to 0 for all non trivial values of a; that is what it 

says and of course, the a has been real value. 

(Refer Slide Time: 10:33) 

 

Now when you look at the proof is fairly straight forward, you start with variance of y 

which you have constructed artificially from v k and we know the variance of any 

random signal as to be non negative; at most it can be 0 rather at least it should be 0. 

Now we use that to prove that the if the proof is self explanatory, we start with variance 

of y k substitute for the expression of y k and then perform your expansions and I am not 

going through it step by step because fairly self explanatory and it is not so much 

necessary to know the full details, but if you are convinced about the proof, it should be 

good enough and the last step tells you in the set of equations, it tells you that the ACVF 

is non negative definite. 

We have only assumed a is to be real value that is all; in the construction of y. Therefore, 

the proof is self evident, but in this we have actually introduced a gamma; big gamma 

matrix which is a matrix; what is this matrix gamma that you see here, what does it 

consists. 



Student: (Refer Time: 11:49). 

It is the variance covariance matrix, but for the series in fact, it is a variance 

autocovariance matrix sometimes we do not use a variance it, simple the autocovariance 

matrix. Of course, we have used only n observations here you can now extend this to 

infinite, the definition says that it should be valid for all n as well, for any n it should be 

valid, therefore, kept the proof fairly generic we have assumed n to be some natural 

number and shown the proof, but this autocovariance matrix is something that you 

should get comfortable with because when we talk about estimation of model parameters 

for auto regressive models or even in the Yule Walker equations and so on, this 

autocovariance matrix will make it is appearance. 

It is just back you know arranging your autocovariance is in a particular way like we do 

in the variance covariance matrix; that is all it is, the diagonals contain the variance and 

half diagonals contain the autocovariances. So, with this hopefully you are convinced 

that ACVF of a series is non-negative definite. Why are we talking about this, the point 

is we have said ACVF is symmetric or ACF is symmetric; does any symmetric function 

that I give you qualified to be the ACF of a stationary process and this property tells us 

no, they not any symmetric sequence qualifies to be the autocorrelation function of a 

random process; why are we raising this question because in practice I am going to 

estimate ACF, when I estimate ACF, why I am estimating ACF of course, to figure out 

whether the series is predictable, but beyond that we also use ACF in estimating the 

parameters. 

For example here we know, if I want to estimate alpha 1 and alpha 2, I need estimates of 

the autocorrelations; I cannot use any estimator that will get me a symmetric ACF, that 

estimator has to produce ACFs that are non negative definite because I know that the 

underline process is random and I am building a model for that random process and I 

know from theory now, that the ACF is non negative definite. So, when I sit down to 

estimate alpha 1 and alpha 2; I am going to work with the estimates at lag l and lag l plus 

1 and so on for other types of models. 

This estimates the entire sequence when whatever formula that I am using for estimation 

should produce ACF estimates that are non negative definite. Otherwise what can 

happen, I will still be able to estimate alpha 1 and alpha 2, I will get some values, but the 



problem is the model does not have an important feature that the random process has, 

which is if I were to compute the ACF s from that model, I cannot guarantee that it will 

produce the non negative definite ACF. In other words, I cannot give you any symmetric 

function and claim that it is ACF of a random process, it has to be non negative definite 

as well. 

We will look at an example shortly, but before we do that let us actually pay or obey 

sense and respect this very fundamental process in the entire world of time series which 

is the white noise process. We will come back to non negative definiteness and submit 

later we keep this at the back of our mind; it is time to move on. This white noise process 

as already made it is appearance many a times in our lectures, now it is time to define it 

formally. Before we do that, let me just quickly tell you why we are defining a white 

noise process, we said that given a series we would like to test the series for 

predictability. 

Suppose the series is unpredictable and how may I testing it through autocorrelation. 

Suppose the series is unpredictable, I need to know how the ACF looks like theoretically 

to begin with that is in other words I am bench marking all predictable process against an 

unpredictable process, so, this white noise process serves as a bench mark. 

(Refer Slide Time: 16:32) 

 

If bench mark in the sense of unpredictability, if the given series as the characteristics of 

a white noise process then I give up in terms of building linear models, why because the 



white noise process is defined in terms of ACF correlations only this is different from an 

IID process. 

An IID process demands, what is it demand; independence which means what there is 

absolutely no relation between any two observations whereas the white noise process by 

definition has no correlation only; 0 correlation which means there is no linear influence 

between any two observations; that means, I can have a white noise process and I can 

still predict, but using non-linear models. A linear models cannot predict what you mean 

by cannot predict is, you cannot improve upon the prediction of white noise process 

beyond its mean. 

The mean is a best prediction; in time what is a difference between prediction of a time 

series or of a random process and general prediction of a random variable. In the 

prediction of a random variable, we simply use expectation where as prediction in time 

series works with conditional expectations that is given the past, I am making a 

prediction and we are not working with conditional expectations per say, we are working 

with linear functions that is what we are doing and correlation is measure and that is how 

all the theory comes in. 

(Refer Slide Time: 18:09) 

 

So white noise process is a stationary; uncorrelated process only, it does not tell you 

what the variance is; it only talks about the correlation, that is why it is useful to talk 

about correlation rather than covariance’s. 



(Refer Slide Time: 18:22) 

 

How does the ACF look like, it is an impulse function for a white noise process at lag 0 

it is 1 by definition and elsewhere it 0 and so on. So, the ACF is an impulse sequence, so 

remember one of the reasons why we are defining white noise process is; it is equivalent 

to bench marking. 

Now, there are two other important purposes to white noise process and that is why you 

should really be comfortable with this concept of white noise process, it is all friction. In 

every class you will be learning some fictitious thing, but all is friction helps us in 

making a forecast that is all you should remember and for some it helps you in getting 

placements in good companies, so that you can make white noise and interview. 

Now, the second purpose of a white noise process is in modeling. Every stage of 

modeling the white noise process appears, the first stage is for bench marking the 

predictability, the second stage is in accessing the goodness of a model, what we will 

understand by asking this question, what do we aspect of a good prediction. When I say, 

I have made the best prediction of a series or of a signal random signal, what are we 

implying; are we implying a predicted accurately. 

Student: No. 

No because is a random signal then what is it mean? 

Student: If there any (Refer Time: 19:53). 



Sorry. 

Student: Reducing the error 

Using the. 

Student: Reducing the error. 

Reducing the error that is a (Refer Time: 20:00) statement. 

Student: performance of the model on some kind of (Refer Time: 20:03). 

Good, but that is not what we are looking for, that is a at a later stage. You will only 

apply it on a test, see I will give you an exam of course, the instructor ask me to give an 

exam, but given the freedom I will conduct an exam only after I am convinced that you 

have learnt correct, but institute is forcing me; the calendar is kind of forcing us to 

conduct exam despite the fact that you probably have not learnt enough. In the case of 

modeling, I have that luxury; there is no calendar asking me to conduct an exam for that 

model; validation that you are speaking of is like conducting an exam. How do we know 

the model has learnt enough; think any answer from the other hall; yes. 

Student: If we subtract the additional from the model from per data and if we get white 

noise. 

Why? 

Student: Then (Refer Time: 21:00) if a model is good enough to predict a data will 

Student: (Refer Time: 21:04) then what we should get by interpret should be white noise 

so that.  

Student: That means, we have taken into account everything that is predictable 

So let us see if there is something else from the other hall quickly then we will wind up 

and continue our discussion to the next class. So, I do not here me answer from there, it 

is a good point in fact that is a key point; when I am building a model and you should 

really get this ingredient in your minds because every time you build a model, you have 

to subject the model to what is known as a residual test. You have built a model, using 

the model on the given data you make a prediction on the so called training data, like I 



keep asking you know there is so much analogy between time series modeling or any 

modeling; not only time series modeling and the learning process. 

You are in a course, you are preparing for an exam and you are also trying to understand 

the subject, you are given assignments. What is the purpose of giving you assignments is 

to train you to; test your learning also. At the time of exam, you should take up the 

assignment problems that you have already been, already looked at and see if you have 

understood everything; that means, whatever is left over; should be kind of random. 

There should nothing to learn systematically, what we mean by random is something 

very specific; the numbers in the problem or something like that where as for as concepts 

are concerned, you should have learnt it. 

Likewise when I present the training data to a model with the help of the estimation 

algorithm, the estimation algorithm is a teacher there. It is helping the model to learn the 

process characteristics in such a way that whatever is left over and given that there will 

be always be something left over because I am dealing with the random signal. 

Whatever is left over should not have any predictability in a linear sense, we are not 

going to repeat that it is a; for us predictability means always a linear sense unless 

otherwise specified. So, the left over which are technically called as a residuals should 

not have any predictability in them which means it should have a characteristics of a 

white noise process. We are not worried about the values remember; a white noise 

process is not defined in terms of values; it is defined in terms of a statistical property. 

So, the residuals should have the same statistical property as that of a white noise process 

which means when I plot the ACF of the residuals of course, in practice I am going to 

look at estimates, it should look like an impulse and that is called residual test for the 

model, for any model it does not matter whether you willing ARIMA model, non-linear 

models it does not matter the leftover of the residuals should not have any predictability 

in them then your model is adequate. 

So, what is that test, it is a test of under fitting whether you have under fit or not. 

Whether you have fed the guest that has come with enough food or not sometimes you 

do not bother the guest can over heat also, but my concern is a guest should not under 

heat, the guest can over heat, roll on the floor I does not matter it; I will give a bed water 

with, but should not hungry because then I cannot sleep, but in modeling unfortunately 



you have to worry about over fitting also. So your model is a very special guest; over 

fitting test will worry about later on, but under fitting is what is the most important. 

(Refer Slide Time: 24:43) 

 

So to conclude this class, we have this white noise process which has an impulse like 

ACVF and this is different from the IID process and remember there is no imposition on 

the variance of the white noise process, we are not worried about that, we are only 

worried about the correlation and by definition it is a stationary process and we will use 

E k to denote do not ask me why I choose that notation, may be it is the common last 

letter to both white and noise and that is why I picked I do not know. 



(Refer Slide Time: 25:11) 

 

(Refer Slide Time: 25:14). 

 

But that is what it is and as I said, it has important roles to play that is yet another 

important role to white noise process, which we will discuss in the next class. 


