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Continue with our discussion on non stationarities and then we will briefly talk on about 

ergodicity and kind of close or qualitative discussions and move on to more quantitative 

stuff where will start looking at auto correlation, auto covariance and auto correlation 

functions. So, what we were discussing yesterday is towards end of yesterday’s lecture is 

the trend type non stationarities and today will talk about the integrating type non 

stationarity. 
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This is a stochastic kind of non stationarity, if you compare this with a trend type non 

stationarity as I mentioned yesterday, trends by definition is deterministic function of 

time, when nothing is mentioned and when your said that is a series contains a trend, it is 

kind of assume that you are looking at a deterministic function of time and of course, 

there is a stochastic component riding on top of it. 

And as you can see and you have seen at least couple of a examples, there are many real 

life examples that fit into this frame work at every stage, you have to tell yourself that 

none of the models that we are building is actually true representative of the process I 

mean it is not a true reflection of what is happening, what we are seeking are not correct, 

models what we are seeking a working models, if your model is able to explain the 

phenomenon you would develop more faith in that model, but then you know you do not 

get up stress with that model and think that the model is a process itself. So, that is where 

you have to detach yourself. So, there is also a philosophy there, an attachment, 

detachment philosophy so, coming to stochastic kind of trends. 
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What do you mean by stochastic trend? Let me take you back here, remember we said 

when you have a trend type non stationarity x that is your random signal can be thought 

of as a mu plus some stochastic signal stochastic signal. 

Now, this mu if it is a deterministic function of time, you have a trend type non 

stationarity, now your mu is not a deterministic function of time, it is a stochastic 

function I mean I do not say stochastic function, it is coming out of a stochastic process 

and there are; obviously, many possibilities, now we are interested in one particular type 

of stochastic trend and this is the integrating type non stationarity, there are different 

names to this and as we call is a integrating time in physics or in statistics also this 

known as random walk phenomenon, then you have Brownian motion and so on named 

after the bottom is Brown. So, if you look at the history of Brownian motion, you will 

find that Brown had actually discovered this phenomenon in his feel, he would he was 

observing the moment of pollen, but of course, he did not get into any math. 

Because perhaps you did not have the time or he was not interested and so on maybe he 

was, but it was not meant to be that way it is nearly essentially later that Einstein 

stumbled upon this kind of phenomena and then gave a more quality quantitative 

statistical very regress explanation to this kind of phenomena and that is when the name 

of Brownian motion came along and in all of this, it was called random walk, I am sure 

you understand what is random walk, I am standing here, now the random of phenomena 



follows, I am standing here, now I have to decide whether to go to the left or to the right 

and if there is equal probability that is 1 kind of suppose I toss a coin, a head turns up, I 

move to my right and a tail turns up, I move to the left. 

And that is in that it is a fair coin then it is going to be equal probability and I am going 

to do this at every step. So, I toss a coin; let us say tail shows up, I move to my left then 

again a toss a coin then the same story. So, this is an example of a random walk 

phenomenon and such kind of phenomena are not fictitious, in the sense it is not some 

kind of very abstract phenomenon as I said starting with the observation of Brown 

people have observed that several phenomena in nature and even kind of man made 

follow kind of a random walk phenomenon and we are interested in one particular class 

of random walk phenomena which is the integrating type. 

Now, why is it called the integrating type? Of course, I have an equation for you here, 

but this equation would not make much sense at this moment to you until I defined what 

is white noise, the e k that you see in the equation is nothing, but the white noise signal. 

That would not make too much sense for you until we define auto covariance function 

and then define white noise we will see later on that this integrating type process is also 

an auto regressive process of order one, so at the moment leaving aside the definition of 

e k. 
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Think of just accept that to be white noise, if you look at the definition say n runs from 0 

to k, now that is the definition of white noise here, there is a mistake, there in the 

equational, correct, it should the index dummy index should be n, that is fine is a minor 

1, will correct it. 

What is happening is think of this white noise as of now, a qualitatively as a shock wave 

that is unpredictable and you can see that the current state of the process is an 

accumulation of all the shock waves right from the beginning. In fact, strictly speaking I 

should be writing here minus infinity, but for now will assume that the beginning is 

indexed at 0. So, because of the accumulation of the shock waves at any instant in time 

what your essential doing is integrating them and that is why the name integrating effects 

of course, it is not so obvious why this is a random walk phenomenon the random walk 

nature comes about much more clearly when we write what is known as a difference 

form of this equation and slowly you should start getting use to this a difference form 

equation at convolution equation and so on. 

This is said to be in some out convolution form how would you write the difference 

version of this x k, let us write a backward difference minus x k minus 1 equals e k very 

good, all right, this we call as a difference version and this version of that is this equation 

representation for the integrating type process is a lot more useful, we work with this 

equation much more often, then this sometimes we use this for theoretical analysis. In 

fact, now we can rewrite this as x k equals x k minus 1 plus e k. Now you can see some 

kind of a random work phenomenon coming out at if you are standing at k minus 1, the 

next state is the previous 1 plus some random component which is an unpredictable 1 

adding out and that is why the name random work comes about to this process. Of 

course, there are different types of random work phenomena, but this is simplest and as I 

told you this is also called the integrating type process. 

Now, this is an auto regressive process also because the process is regressing on to itself 

you should get use to this term auto regressive and of course, will talk about that more in 

detail, later on. X k if you look at the process x k minus 1 is actually regressing on to x k, 

regression is the term that comes from hypnotherapy and so on where you looking at 

effects of passed regressing on to the represent now there are where if you move is based 

on that right will not get into that now anyway. So, you can see that essentially a random 

work phenomenon and another way of looking at this integrating type process is from a 



prediction view point given all the information up to k minus 1 the best prediction of an 

integrating type process is the previous value itself. 

By the way, write this way, by the way you should slowly get use this notation x hat of k 

given k minus 1 implies that I am predicting x at k given all the information up to k 

minus 1 not just at k minus 1 and that happens to be x k minus 1 why is that. So, 

qualitatively sorry, predict the correct because e k is unpredictable by definition what we 

mean by unpredictable given any amount of history of e k the it the prediction of e k is 

the mean itself typically these e k is are assumed to be 0 mean. So, the best prediction is 

the previous value itself. Now what is the non stationary part of this we have not seen 

why it is called non stationary will prove this a bit later on, when we learn how to 

analyze the auto regressive processes, we can prove it one way. 

The other way that you can see right know instead of getting into the auto regressive 

world there is a way to prove that this is non stationary, how do you prove that it is non 

stationary typically what is the procedure that we adopt? We will try to see the mean is 

changing with time, what happens to mean of this process? So, if this is the equation, we 

can use this equation to arrive at the mean, what would be the expectation? 0, because 

expectation operate as a linear operator on the right hand side the expectation yields 

value of 0. So, that is not an issue it is stationary in the mean what about the variance 

how do you calculate the variance? 

Student: (Refer Time: 11:11). 

Why where is (Refer Time: 11:13). 

Student: It is a sum of (Refer Time: 11:16). 

Central limit theory is only use to arrive at the distribution; I mean a part of also that tells 

you what is the variance but the focus of the central limit theorem is to give you results 

on the distribution part. Simple x k is made up of k random variables right some of k 

random variables, how do you compute a variance of some of random variables? 

Student: (Refer Time: 11:46). 
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Sorry, suppose I have let us take a simple example, suppose I have a 2 variables y1 and 

y2 and x is made up of; x is essentially y1 plus y2, 2 variables y1 and y2 and add up to 

produce x, what is the variance of x? 

Student: Variance of y plus variance of x minus co variance (Refer Time: 12:11). 

Minus, why minus? So, sigma square y1 plus sigma square y2. 

Student: (Refer Time: 12:18). 

2 times, very good, 2 times covariance between y1 and y2, now you can extend this 

equation to n variables or k variables. Apply this to find out the variance of x k, sorry, k 

times sigma square e, why, what happen to the covariance?  

Student: (Refer Time: 12:45). 

Did I say independent? At the movement it is uncorrelated, there is of course, will talk 

about to 2 different processes white noise and IID, the covariance terms vanish by 

definition of the white noise remember or white noise sequences such that it is 

unpredictable. What do we mean by that unpredictable? In a linear sense, let me make 

that complete statement and because it is unpredictable in a linear sense, there is no 

linear dependency between any 2 observations or in at any 2 instance the signal is 

uncorrelated. 
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Which means all the cross terms would vanish and therefore, we would be left with so, 

sigma square x k remember strictly speaking your suppose to use the random variable, 

but as I said will slowly dilute that notation and work with sigma square, here x k will be 

used for both observation as well as the random variable k times sigma square e if sigma 

square e is the variance. We will give a formal definition of white noise shortly will e k 

is assume to be stationary by definition. 

Now, can we conclude that x k is not stationary because the variance is changing with 

time that is good enough to tell us that it is non stationary, we will arrive at another I 

mean we will look at, arrive at this same conclusion by looking at the poles so called 

poles of the auto regressive model, but will reserve that for a later discussion good. So at 

any signal that any instance or is the signal is accumulation of all the shock waves and 

therefore it is called integrating effects. 
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This is something that we have already discussed, let us get a feel of how this, such a 

process looks like I am showing you just one realization of an integrating process you 

can easily simulate integrating processes even and are you can generate this realizations. 

I will show you later on how to simulate integrating processes or even in general arma 

and arima processes may be couple of lectures down the line.  

So, the main point here is going back to this difference equation form we have written it 

this way to see that it is a random work process, now will go back to the previous 



equation that we had to see that a single degree of differencing can produce a stationary 

series - that is x k is non stationary, e is stationary and lot of the theory that we are going 

to work with is applicable to stationary random processes. Now what this equation tells 

me is by differencing x once I am able to produce a stationary series, this is the pure 

integrating process therefore, 1 degree of differencing has actually produce a white noise 

and on the plot you see this on the top I show the realization of the integrating process 

and on the bottom, in the bottom panel you see the differenced series. 

And at least visually when you look at it, it appears to be stationary whereas, the top 1 

appears to be non stationary. Although it should be careful when you draw conclusions 

visually its lot more easier to detect trend type non stationarities visually then the 

stochastic once for theses stochastic once in particular the integrating type and so on, one 

has to formally conduct a statistical test and will talk about this so called unit root test. 

What we mean by unit root here is when you go back to the difference equation form or 

the recursive equation form you see that the difference equation form has a root at one at 

unity, yes. 

Student: (Refer Time: 16:55). 

Right, e has? 

Student: Constant variance or (Refer Time: 17:01). 

Yeah, it is stationary; the moment is station; that means variance has to be constant. So, 

by definition, white noise is a stationary uncorrelated process and we have already made 

use of the uncorrelated property in deriving the variance of x k and when I wrote this 

expression that point I said e we have made invoked the stationarity property of e k. 

Somewhere we have to fix things, so we assume that this white noise is stationary. You 

can have non stationary white noises also, but for now will work with stationary white 

noise and that is what gives us this expression. So, there are these unit root tests which 

will allow us to determine whether the process has random work behaviour I mean 

integrating type behaviour or not. 

Now, many a times, 2 things can happen that is here it is a very simple case where I 

difference once and I recover the white noise, in a more general sense you may have to 

difference many times to make the process stationary, we do not know, typically you will 



not encounter the case where you have to difference more than 3 or 4 times and so on, 

but one may run into such a situation and this degree of differencing has to be 

determined on a case by case basis here, 1 degree of single degree of differencing as 

produce a white noise that is point number 1. 

Point number 2, it is you should not thing that always this when is integrating type non 

stationarities are present, the moment I difference or how many I have a times a 

difference I will get a white noise process, it is not necessarily the case. This statement 

says that once you difference or may b the times you difference, you will recover a 

stationary process. In other words instead of e k you could have here some w k where w 

k is the stationary process, in which case w k itself has some kind of a model to be built 

and put together we called this as an arima process and, but the terminology will become 

clearer later on. 

When single degree of differencing produces white noise we call is as a pure integrating 

process that is it, it is called an integrating process, when a single degree of differencing 

or any d degree of differencing produces as a stationary process which is not necessarily 

white noise then we run into what are known as arima kind of processes which we will 

talk about later on. Now are there processes out there which have this kind of behaviour? 

Numerous, you will find them predominately in econometrics, a lot of stock prices, stock 

market prices, financial variables and so on, have this kind of behaviour and a lot of 

disturbances that you seen engineering processes also have a random walk kind of 

behaviour. 

We will shortly understand through the help of auto covariance function a different 

aspect of this random walk phenomena in terms of the correlation and so on, but we will 

restrict ourselves to this integrating type processes when it comes to stochastic, non 

stationary I mean stochastic trends. So, there are 2 kinds of non stationarities that will 

think of in fact 3 I should say including the periodic one, one is the deterministic one 

which subsumes the polynomial trends as well as periodic ones, in that sense we are only 

looking at 2, but if you separate the periodic one because we will give a separate 

treatment to the periodic one then we have this stochastic type trends or non stationarities 

in which we will considered particular the integrating type only, these 2 are enough to 

trouble us in this course. 



To begin with we will restrict, will confine our discussions to stationary processes once 

we are in a position to model stationary processes then will bring up the non stationary 

part for example, here I said instead of e, you could have w where w is the stationary 

process, let us say you discovered by a single degree of differencing that you have a 

stationary process for example, in this figure that you see the top comes out of an 

integrating process, you would not know whether it is a pure integrating process or an 

arima kind of process a single degree of differencing gives you a stationary series the one 

that you see in a bottom here. Now obviously by looking at this, you would not be able 

to say if it is a white noise, if it is a realization of a white noise process, can you? It is not 

possible. 

And that is going to be the subject of discussion very soon where will study auto 

covariance functions which will tell us whether this is a realization of a white noise 

process or not, correct. It would be great if you can look at the series and determine 

straight away there it is white noise then the entire theory would come, life is not so easy. 

Student: Why is it particularly a difference? Is there, can we have submission or of 

anything else? (Refer Time: 22:23). 

No, no, the origin is this, or some people argue that the origin is this; it is a good 

equation the difference equation comes because of the random work kind of phenomena. 

So, I am at this state, this is x k minus 1, what would be x k? A random component 

adding on to the present position, present state, whether I move to the left or right 

remember e k can take both positive and negative values in general and there is a 

probability associated with that. So, all we are saying is that the next position is the 

current position plus some random component and that is why you can begin with this 

equation if you like and if the probability that is the phenomenon that is determining 

might next position is a white noise kind of thing then you have a pure integrating 

process. 

If the phenomenon that is going to govern my next position that is where I move from k 

minus 1 itself comes out of some stationary process which is also probabilistic process, 

then we have a more general arima kind of process. So, the starting point for an 

integrating process can be can be different in the sense I could start with this is what we 

are started with claim in there is integrating process, but someone else could say no, no I 



will assume that my starting point is this equation because this allows might explain the 

random work phenomena and then show that this is an alternative description. 

There are several ways of describing the same process this is something that you should 

slowly get use to any process in general will have different form of forms of descriptions 

or representations they all mean the same it is says that the mathematically equation 

looks different and which mathematically equation do we want to work with in other 

words which model or representation, we want to work with entirely depends on the 

application that we are looking at and the context that we are looking at. In this case we 

began with this and then this kind of summation equation and went on to the difference 

equation, I might have as well began with this and gone to this form as well. 

So to answer the question, the difference equation form comes about by virtue of the 

nature of random work its current position plus some random content. So, let us actually 

now close the discussion with the small cautionary note on differencing. This 

differencing is a very attractive option to get rid of the integrating type non stationarity 

or to model the integrating type non stationarity, but many a times you may end up 

differencing when there is no need to do so; that means, your process is not an 

integrating type and you may still end up differencing the series, maybe in advertantly or 

axenently or whatever or it is an over site. That can actually cause more harm them 

could. So, one has to be careful you have to be sure has to be enough conviction to 

believe in other words to difference series. For example, let me give you a very simple 

example suppose the given series was e k itself. 
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In the simplest case I gave you realization of white noise you would in; let us say bother 

to look at the series to visually inspect the realization or even conduct the basic tests you 

simply said OK, now I being talked at the first step is differencing the series and it let us 

see if it makes a difference. So, you ended up differencing the series and let say you 

produce a new series let us call at as v which is a result of differencing this white noise. 

What have we done here? The original series is coming out of a white noise process 

right; that means, there is no model to be built, now differencing has actually introduced 

some kind of a correlation right, you can actually take 2 successive observations of v k 

and you will find they are correlated, if I have to the expression for v of k minus 1 or 

even k plus 1 we will see the same thing. So, this is the expression for v of k minus 1 you 

can see that there is a correlation between v k and v k minus 1, likewise v k and v k plus 

1. This is artificially introduced by virtue of differencing, and we will see later on that 

this can cause problems as is you can see qualitatively you have introduced by 

accidentally differencing the series as spurious correlation and you say now I have a 

series that is correlated, I will build a model. 

If that is the joy that you want, you can go ahead and do it, even if I give a white noise 

process you want to build a model you are so desperate then you difference a series and 

then build a model and say this is the model and then you again go back to your original 

series.  



Ultimately remember you have to forecast this series that has been given to you, you 

may build a model for v and then come up with a forecast equation all of that is not 

necessary at all, had you followed a systematic procedure you would not have actually 

run in to this unnecessary differencing. In system identification which we do not study 

here, unnecessary differencing can actually amplify the noise effects in the measurement; 

we will not go into that. So, there are precautionary measures that your take, you have to 

exercise some restraint when it comes to differencing, just do not keep on differencing, it 

is like you know beating until the series speaks to you, do not thrash it up. It is going to 

have its own repercussion. We will come to all of this again when we look into, study 

arima models. 


