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So, generally the weaker versions of stationarity are defined by requiring that certain key 

statistical properties remain invariant with time and we know by now that the some of 

the key statistical properties are mean, variance, but what we do not know is something 

called auto covariance. We have talked about mean, we have talked about covariance 

that is because we were talking of general random variables, but now we are talking of 

random signals where we are looking at an ordered collection of random variables and it 

is important for us to look at these jointly and that is where the auto variance notion 

comes into picture and leads us to this notion of weak stationarity. 
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So, this weak stationarity has different names it is called white sense stationary, 

stationarity or second order stationarity; as you see from the definition why it is called 

second order stationarity. This order here is not in terms of distribution it is in terms of 

moments we are looking at second order moments. So, there are three requirements for a 

process to be called as weakly stationary or white sense stationary or in a second order 

stationary the first requirement is that the mean be independent of time. 
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So, the in the example that we just discuss we had mu k as minus 2 a by pi omega correct 

sin omega k correct good. 

Is this weakly stationary it does not satisfy the first condition which is the mean to be 

independent of time on the other hand. So, this was a case when phi was uniformly 

distributed between 0 and pi, if on the other hand I have to remember my t s advice hold 

on. 

(Refer Slide Time: 02:23) 

 

So, if on the other hand phi for the same problem phi was uniformly distributed in minus 

pi to pi, we have already calculated the mean have not we, what is the expectation 0 

right. So, expectation of x k is 0, at least it satisfies the first condition. It does not mean it 

is weakly station, there are two other requirements that it has to satisfy correct; then the 

second requirement is at the process to have finite variance. 

So; obviously, we are excluding class of processes that can have infinite variance are 

their real life processes that do not satisfy the second requirement, yes there are many 

processes that have so called Cauchy distribution like an earth quake process for 

example, has infinite variance it does not really fall into this realm of weakly stationary 

processes, but we will not worry about that, we will fortunately we have a large class of 

processes that still satisfy the second requirement. You must appreciate that these two 

requirements are not as stringent as the requirements of street stationarity correct, the 

street stationarity or even the nth order stationarity in distribution requires at the 



distributions remain in variant, but here we are only saying let the averages and the 

variances remain invariant with time and let them we finite. 

Of course in the first we have implicitly also meant that the mean should be bounded as 

well I have not stated that, but you can note that down; mean should also be finite. If the 

mean is infinite what happens; is a second condition satisfy not. So, it is kind of 

understood, so then the third requirement where now for the first time we come across 

this notion of auto covariance function. If you look at this definition, we will go over this 

definition in much greater detail bit later, but up front in order to give a complete 

definition of weak stationarity; I am introducing the definition of auto covariance here 

itself it is like a curtain riser, but we will look at this in detail later on. 

So what is this auto covariance, why is it called auto covariance? Because you are 

looking; first of all it is a covariance then as a name suggest auto covariance function is a 

covariance and now you understand why we studied covariance in great detail correct. It 

is a covariance between any 2 observations that I randomly choose; located at instants k 

1 and k 2 alright and this auto covariance in general for any process can be a function of 

where these x k 1 and x 2 are located where these 2 observations are located and that is 

why we have written the covariance as a function of k 1 and k 2 and a subscript, there is 

a double subscript indicating that you are looking at observations from within the same 

signal; which means there is a possibility of looking at covariance; computing covariance 

between two observations from two different random processes. 

That is where we run into cross covariance function, but will discuss that later on. So, the 

notation has to be carefully understood. So, the third requirement is this auto covariance 

function be only a function of the time difference; pretty much like what we demanded 

for the nth order or the second order stationarity in distribution. Why do you think this is 

necessary, why are we demanding that this auto covariance function be only a function 

of the time difference and not k 1 and k 2; any explanation; you can think about it its 

fairly easy the same kind of arguments that we used for requiring stationarity. 

Student: (Refer Time: 06:47). 

Right, what kind of relationship? 

Student: (Refer Time: 06:55). 



Very good, so why is that required? Why is it required? Practicality, it is shear 

practicality right. I mean; I collect a bunch of observations that is one data record and I 

am going to examine the dependency ultimately what I am going to do I am going to use 

his model for forecasting. So, if my statistical measures are telling me there is a 

dependency of the past the present with 2 samples in a past let us say then I would like 

that to remain invariant that dependency to remain invariant with time, what happens if it 

is not that model that I have identified is only for that combination of observations, I 

cannot use that model in future. So, each time we are going through the same argument 

ultimately we want to make sure that the model that I build that the analysis; the 

inferences that I draw from the analysis of single record whole good for future and 

probably for the past as well right as definitely. 

So, here we have restricted our self to linear relationships straight away because we 

know covariance is a measure of linear dependence, straight away it gives you a feel that 

this definition is sufficient as long as you are in the linear world or this is definition this 

relaxation of strict stationarity is good is find and a sufficient when your developing 

linear models alright. So, the white sense stationarity therefore, has three requirements 

mean should be independent of time, variance should be bounded and auto covariance 

should only be a function of this so called lag, what is the lag; the time difference. This 

also means that - if I am looking for example, at covariance between let us say now x 1 

let me say here 1 comma 3; if it is white sense stationary or weak weakly stationary they 

should be equal to sigma 2 comma 4 and this can also be equal to sigma minus 1 comma 

1 and so on. 

Any two observations that are spaced l samples a part should have the same linear 

dependence, what is this l? k 2 minus k 1 and that is what we call as the lag. So, this auto 

covariance function is not a mysterious one, it is after all at it is heart a covariance 

measure that is all, it is auto because a signal you are looking at the same signal, it 

becomes cross when you do not claim that auto you actually get into two different your 

analyzing two different series correct any questions. So, these are the three requirements 

for a process to be called widely sorry wide sense stationary or weakly stationary and 

also second order stationarity why do we call this a second order stationary because the 

covariance is a second order movement of the joint period correct. 
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So, under what conditions is this weak stationarity assumption justify when we are living 

in the linear world. How do we justify this? Of course, we have already seen covariance 

is a linear measure and we know that in correlation is one of course, we have talked only 

about covariance very soon, we will talk about auto correlation which is nothing, but a 

standardized measure, we have seen the relationship between linear regression and 

correlation they are synonymous to each other. So, intuitively it is very straight forward 

to see that this wide sense stationarity is justified in the linear value, but let us understand 

is with the simple example. So, suppose I have a stationary process some station; I am 

given it is stationary and I am going to bill a predictor of the form that I have given; that 

is I am going to predict the random process at k using a linear function of 2 immediate 

observations in the past and let us say the coefficients are minus d 1 and minus d 2, there 

is a reason why I have used minus d 1; you can use d 1 as one does not matter. 

Now, what I want from you is the answers to the optimal estimates of d 1 and d 2 and 

predicting a stationary process using this linear predictor and I would like you to give me 

the optimal estimates; optimal in what sense that minimizes the mean square prediction 

are, we have already seen that. 
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In other words you have to tell me what are d 1 star and d 2 star that minimize 

expectation of x k minus x hat of k x square and the answers could be given in terms of 

the statistical properties. You will realize the purpose of this exercise once you get the 

answers and then it is kind of a corroboration of what we have answered the top. Assume 

x to be 0 mean for convenience, remember that since there are two unknowns, you will 

have to come up with two equations right at least 2 equations and it is even sufficient if 

you tell me those 2 equations, the hint is that you will have to use the definition of auto 

covariance that you have introduced earlier. 

So, that when you are looking at expectations of products of two different observations, 

you will write them in terms of auto covariances; you have those equations sure. 
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Or I can even write on the board for you sigma x x at any lag l is expectation x k minus 

m k; x k minus l minus mu k minus l. Since I am given it is stationary, we can actually 

assume that mu is the same and that the auto covariance is only a function of the lag l 

and given there it is stationary; it is very important and you are additionally given that 

mu is 0. So, for this example sigma x x at l is nothing but expectation of x k times x k 

minus l, any answers from here or the other hall. Let me ask you let me write here matrix 

remember will we have two equations and two unknowns. 
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So, two unknowns are d 1 and d 2 ultimately, you should be able to write your equations 

in this form as a set of 2 equations in a matrix form and then eventually it boils down to a 

linear algebra problem. So, you will have to tell me what are the entries of this matrix 

and this vector here, if you proceed in a step wise fashion then you will not get lost; first 

expand this quadratic and then apply the expectations and rewrite your objective function 

in terms of the parameters and auto covariances and then differentiate the objective 

function with respect to the parameters d one and d 2 any answers the expectation of x 

square k would be the variance itself any answers from the other hall; yes. 

Student: (Refer Time: 16:09). 

Sorry. 

Student: (Refer Time: 16:13). 

Here. 

Student: (Refer Time: 16:14). 

Sigma let us draw the subscripts, so that is easy sigma here sigma of 1 alright minus 

sigma 1 alright and then. 

Student: (Refer Time: 16:36). 

So let us see if there is at least we need one more person to confirm this answer. Now 

what is sigma naught square hold down, so that is probably got to do with the confusion 

in the notation; sigma x x and 0 since I have not a written in the subscript perhaps is a 

confusion sigma x x of 0 is nothing but sigma square. So, either you specify the lag or 

you drop the lag and then you write it is in the sigma square. So, that is the convention; 

this confusion will prevail for one or two lectures and after that you will be comfortable, 

so either you use sigma square or sigma at (Refer Time: 17:26) clear. 

Any other person, with the same answer; is it correct is fine very good. So, others of 

course, can verify you can always discuss with me after the class, but this set of 

equations are correct. So, you see we have actually moved from the world of random 

processes to the world of linear algebra and that is always going to be the case. Now we 

will as you will learn throughout the course keep visiting these kinds of equations for 



model building, what you see straight away is the optimal estimates. So, if you call them 

as d 1 star and d 2 star, the optimal estimates are actually only dependent on the second 

order movements. 

So, it is if I want my model to remain invariant with time or let me put it with this way; if 

the auto covariance is are invariant with time then a model parameters are going to be 

invariant with time which means that the model that I estimate from a finite record of 

data is potentially useful for future as well; that means, some kind of stationarity is obey. 

So this hopefully drives home the point that we made earlier that the weak stationarity or 

white sense stationarity is good as long as we are in the linear value. The moment we 

move to the non-linear regime, then other movements come in that is a higher order 

movements come in; what kind of higher order movements set in depends on the nature 

of the non-linearity. 

We are not in a position to comment on that because as a said it depends on the nature of 

the non stationarity and non-linearites as well. So the point to remember is; it is 

sufficient to assume a process to be weakly stationary as long as I am working with 

linear models. By the way the bunch of equations that you see here where conceived by 2 

different people Yule and Walker and this equations that you have are named after them, 

somewhere in mid 1920s these are called Yule Walker equations and they are very 

frequently used to estimate what are known as auto regressive models. In fact, the 

predictor that you see here in this example comes out from what is known as an auto 

regressive model of order 2, but we will discuss that in detail later on. 

So, write down the purpose of this example was to show by the sufficient to have 

invariance of second order movements; up to second order movements as long as we are 

working with linear models good. Now again like we saw in the case of prediction we 

said a linear predictor is in general sub optimal predictor compared to the conditional 

expectation, but their identical when x and y are jointly Gaussian distributed; likewise 

here white sense stationary process or a weakly stationary process is also strictly 

stationary, if the observations or if the random process itself is so called Gaussian 

process; what is a Gaussian process the joint distribution of any set of observations that 

you pick have a joint Gaussian distribution; does not matter how many you pick, you 

pick 2 then there should have a joint Gaussian; you pick three observations jointly there 

should have a joint Gaussian and so on. 



Which means every observations should follow out the Gaussian distribution as well 

why is this so, why Gaussian process which is weakly stationary strictly stationary 

process as well because the Gaussian distribution is completely specified why the mean 

and covariance and bit and the whites and stationarity demands that the mean and 

covariance remain in variant with time and; that means, the distribution itself will remain 

in variant with time therefore, you have the result it. So, Gaussianity has a lot of nice 

properties and that is why that is the de fact to assumption, default assumption that 

people make; if they have to complete the degrees and if you do not want to get in to 

complications alright. 

So, very quickly let us talk about non stationarities and will continue with discussion 

tomorrow, we have talked about street stationarity, we have talked about order 

stationarity in distribution and we have also talked about second order stationarity in 

movements. So, it definitely it is worth and there is a merit to discussing the different at 

least some of the most popular types of non stationarities that one encounters; it is 

impossible to discuss all types of non stationarities. Generally speaking; that is broadly 

speaking, you can classify the non stationarities into 2 types deterministic type of non 

stationarities and stochastic type of non stationarities. In the deterministic category you 

would run into non stationarities such as polynomial trends like we saw for the air line 

passenger data, there was a linear trend; it could be quadratic also within test, but 

definitely there was a trend. 

What is it mean? The stochastic signal is riding on a horse that is a deterministic function 

of time, it is a polynomial function of time or it could be any other deterministic function 

of time, it could be for example, may be a sign wave as well, but then those are special 

cases, you could also that is what we call as periodic, you could also have variants non 

stationarities and variances being deterministic functions of time, it may not be just the 

signal being signal having a trend. On the other hand in the stochastic type of non 

stationarities that trends that we spoke of just now could be a function of stochastic 

function or could be the outcome of a stochastic process that is leading to the non 

stationarity and we shall discuss only one class of this stochastic type of non 

stationarities known as a random walk processes or the integrating processes. 

There are of course, many more types of stochastic processes, but large class of the 

stochastic processes that we encounter particular in economic rates and even in 



engineering can be model as random walk processes and we will also see that this 

random walk model can handled to a certain extent the deterministic trend type of non 

stationarities. So, to give a very quick example of a trend type non stationarity and now I 

have come back to the deterministic type of non stationarities. 
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For example you could have x which is your random signal as super imposition or super 

position of two signals; one is a deterministic function of time and the other is a 

stochastic process. So, mu k is the polynomial function of time, if mu k is a linear 

function then we say it is a linear trend. 
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Let me give you an example; the air line passenger data that you see here on the top we 

have also look at this yesterday, if you see there is a trend correct and on the phase of it; 

it appears itself a linear trends you can probably say it is a linear trend type non 

stationarity, but one has to only confirm by fitting trends and seeing if a linear trend is a 

able to explain the trend or a quadratic is necessary what I have done is I have fit a linear 

trend and now I am showing you the residual whatever is left over after fitting the trend; 

what you see is it still stationary it is not because the variance is changing with time at 

least if you your we have handle the mean non stationarity that we have captured with 

the variance non stationarity remains and this is typical of any growth process. 

That has to be handle and there are 2 different approaches to handle that either you can 

then a perform a transformation to convert this non stationarity process to a stationary 

signal or you can fit what are known as gorge models generalized auto regressive 

conditional hydro stochastic models too much, but I mean if you do not know anything 

you can use it to scroll summer or that is what we use do to with terms and biology like 

protozoa and so on when we (Refer Time: 26:10) I had very difficulty great difficulty 

understanding having a feel for platyhelminthes and so on, but now probably I will 

appreciated by that anyway. So, we will not talk of gorge models in this course I am just 

saying that there are different approaches to handling non stationary processes.  

We will continue our discussion tomorrow where we will conclude with ergodicity and 

then go into auto covariance. 



Thank you. 


