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So, let us move on and yesterday I had mentioned that one of the limitations of using 

correlation alone, apart from a few others that it does not give you, it is not a measure of 

causation and it has no directionality built into it; is this problem of confounding. In 

other words, if I find two variables X and Y correlated then the question that really begs 

our attention is are X and Y directly related, can I assume that X and Y directly related 

and to that effect we had referred to an example yesterday of this you know number of 

fire trucks or firefighters and the damage caused by the fire. If I find the correlation 

between those two variables, it will turn out to be very high fine good does; it mean that 

the number of firefighters have a direct correlation with the damage and unfortunately 

even more in a way that is completely counterintuitive, counter physical and so on. So, to 

give you an idea let me actually again take you back to r, where I have downloaded a 

data set from the web. 



(Refer Slide Time: 01:32) 

 

There is a website and I have essentially converted that they tie into a csv file. So, let me 

actually clear the screen here for you and read that data for you. 

(Refer Slide Time: 01:42) 

 

I will also post this data on the website; you can also play around with it. There are 

several ways of reading, you can actually use a read dot csv; I have saved the data as a 

comma separated variable file you can actually read sorry csv and the file name is at 

least in my case, it is called the fire data underscore paradox dot csv and I am going to 

say that yes there are headers in this file oops sorry. So, header equals true now what this 



has done is, it has rate the data from the csv file and stored the data in this data frame 

called fire data alright. 

(Refer Slide Time: 02:37) 

 

And what does this fire data contain, it shows that there are three variables here sorry; 

looks like I just there are three variables here called damage, severity and number of 

firefighters alright and it has 50 observations of these three columns. Now, let us 

compute the correlation between the damage caused by the fire and the number of 

firefighters. If you think of it physically, there should be a correlation between these two 

right; obviously, because the more the number of firefighters what would be the damage; 

higher would be the damage or lower; lower? Let us see if our correlation actually tells 

us that, let us compute here; fire data and remember this is a data frame. In fact, I can 

probably use even the dollar yes, so damage here that is our; let us say Y variable and X 

variable is our firefighters, correlation does not worry about the direction, so I can 

interchange the order of variables here. 

This is the correlation that I get; do you agree with the sign of the correlation estimate 

that we get. What do you think, so this says that there is a positive correlation if you send 

more firefighters, more damage will occur which is probably good news for the 

firefighters. So, that they say well I do not to go because if I go the damage is increased, 

but; obviously, it does not make any sense right. Now this is a problem with correlation 

that is one of the problems right that the sign is completely counterintuitive, it is just a 



correlation. In many cases, it may even indicate a non 0 correlation when there is none; 

in this case we are worried about the sign between a general scenario, we are also 

worried about the magnitude. Many a times correlation can turn out to be non 0 when 

truly there is no direct relation between them. 

So, now let us ask how to resolve this issue and the issue is resolved by using what is 

known as a conditional measure. What do we mean by condition measure here in the 

data set that you just saw in addition to the damage and the firefighters, we had an 

measurement of another variable called the severity, which is a measure of how huge the 

fire was; had I taken that into account perhaps I could have come to a better conclusion; I 

mean correlation would have made more sense. So, in general X and Y may be related 

through another variable Z. 
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And this Z we call as a confounding variable or the mediating variable, in some 

situations Z is also known as a suppressing variable, depending on the nature of the 

effect the confounding variable has on the correlation between X and Y. So, what is 

happening in general is we have only X and Y and we are just measuring the correlation. 
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So, one of these possible situations is that we have X here X and Y and Z, it is likely that 

this is the situation, there is no correlation between X and Y direct correlation. So, the 

key word is direct alright, probably this is how X Y and Z are connected. If we do not 

measure Z and we only measure X and Y then what would happen is that X and Y would 

appear connected. In the firefighting example yes there is also this relation agreed but in 

many situations this direct relation may not exist at all.  

So, now when Z is not measured X and Y may appear connected, note that I have not 

drawn the direction of the association between X and Y because correlation does not 

measure the direction. So what we would like to know is whether this direct link is 

present or not as you see on the schematic; I would like to know, have a measure that 

will tell me whether an X whether X and Y are directly related, how will I know that; I 

will have to necessarily have the measurement of Z with me. 
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Now, I will not just estimate correlation between X and Y, but instead in fact, let us talk 

about covariance first and then talk about correlation. So, I would like to have now what 

is known as a conditional covariance given Z, I would like to compute X and Y. So, you 

are asking in the presence of Z; now tell me whether X and Y are related. So, the point is 

correlation measures what is known as total connectivity, what we mean by total is; 

suppose this is a situation and you compute correlation between X and Y without taking 

Z into account. 

Remember X and Y are now related along this direct pathway and also this indirect 

pathway. Correlation measures the dependence between X and Y along both pathways 

and what do we want to know whether there is a relation along the direct pathway. This 

is one of the fundamental ideas in causality analysis, in network reconstruction from data 

which are some of the hot areas today in data analysis. So these conditional measures are 

also known as partial measures. In calculus also we come across this kind of concept; 

total derivative versus partial derivative right we use d and dope, but of course, we do 

not use the different symbols here. 

There are many ways of writing this conditional covariance symbolically for example, 

you could say sigma X, Y dot Z, you could use this notation or sometimes people would 

say given Z that is up to you, we can use the dot operator notation here and likewise 

correlation; conditional correlations would be denoted as rho X Y dot Z and we want to 



know how to compute this sigma X Y dot Z, rho X Y dot Z is computed from sigma X Y 

dot Z. Any ideas on how I could compute this condition covariance or correlation; let us 

talk about covariance, any no; wild idea what is it that we want to do we want to cut off 

this pathway, we want to sever these links, does it give you some idea? 

Student: (Refer Time: 10:35). 

What would be that; that is correct so. In fact, covariance of X and Y given Z would be 

actually covariance you are right; covariance between X given Z and Y given set, but 

how does one compute in practice is X given Z and Y given Z, what do you mean by X 

given Z and Y given Z sorry I do not understand. 

Student: (Refer Time: 11:05). 

Can I go to r and say how do you envisage that we can do this. 

Student: (Refer Time: 11:17). 

That would not help; in general it may not help. Any other ideas? 

Student: (Refer Time: 11:32). 

Sorry. 

Student: (Refer Time: 11:34). 

It is a function of Z, how do you do that? 

Student: (Refer Time: 11:44) 

What is this idea of X given Z and Y given Z? So, let me explain that you kind of you 

know getting some idea, but we have to be lot more clear because we have to spell out a 

procedure and that procedure has to be very sound; theoretically first and then of course, 

a practical one will follow. So, the procedure is to compute covariance between first step 

is to regress X on to Z and Y on to Z. The general concept of conditional measure is a 

very generic one, since we are dealing with covariances and covariances are linear 

measures; what we are trying to do is we are trying to now sever the any linear 

dependency that Z linear influence that Z can have on X and Z can have on Y alright. 
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So, what do we mean by severing in this link, you regress Z on to X and likewise here Z 

on to Y here and in other words build your best predictor for X or prediction of X in 

terms of z. So, let us call that as the star an optimal prediction of X using Z alone, if I 

were to give you Z; what would be a prediction of X and likewise what would be your 

optimal prediction of why using Z alone. Of course, using a linear model we will restrict 

ourselves to linear models and this is obtained by our procedure that we have learnt 

earlier, build a linear model between X and Z and then build your optimal model from 

there you compute your optimal predictions. Whatever is left over is what we call as the 

residual and these variables are essentially conditioned variables conditioned on z. 

You follow; first we predict X using Z alone, whatever influence Z has on X is captured 

in your prediction and once you discount for that from your original X whatever is left 

over is a residual, if it so happens that Z completely is able to completely explain X then 

epsilon is 0 then; that means, X is nothing, but Z itself, but that is rarely going to be the 

case likewise here for Y; yes. 

Student: (Refer Time: 14:15). 

Yes. 

Student: (Refer Time: 14:20). 



It is, but I mean if you are looking at a general predictor here we restrict ourselves to a 

linear predictor. Yes in general you are right, this is a conditional expectation of X given 

Z, but we do not break our head with condition expectations now, we are living in the 

linear world. So, we will build a linear model to construct this in other words I would 

build here X equals; a plus b z this is the predictor that I would fit and then go through a 

regular procedure to obtain optimal estimates of a and b from which you compute the 

optimal prediction. 

So, you do this essentially you fit two regression models and work with the residuals and 

compute the correlation between the residuals. So, that is all and that gives you the 

conditional covariance of course, you have to ask what assures that this conditional 

covariance gives me a direct correlation, you have to also be assured of that correct that 

is something that we will shortly see. 

Now, what is the optimal prediction of here; what is optimal prediction here the optimum 

prediction is obtained by first obtaining optimal estimates of a and b for simplicity 

assume that there is no a then we know I mean regardless of whether a is present or not 

we know that b star is nothing, but sigma X Z by sigma square X, we have derived this 

already, this is optimal estimate in what sense the one that minimizes the mean square 

error expectation of X minus X hat square. Likewise if I were to fit a model for Y; Y hat 

let us say we call this as some d times Z; then d star would be sigma Y Z by sigma 

square sorry Z here. 

So, what is our optimal prediction now; optimal prediction X hat is this b star time Z 

likewise optimal prediction of Y is b star time Z, am I right. Any questions until this 

point, these are something that we have derived even in yesterday’s class. 
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And what we are saying now is sigma X Y dot Z is covariance between the epsilon X dot 

Z and epsilon Y dot Z. Can you compute that, all you have to do is plug in this 

expression into this and likewise Y hat star into this and then compute the covariance, 

you will get a nice expression ultimately I would like you to give me the answer in terms 

of the covariances and the variances of X Y and Z and so. 

Any difficulty; no you can ask feel free to ask because sometimes it is easy to get 

confused here at this point, I will just write the next step here is covariance between X 

minus b star Z and Y minus d star Z; is that clearer now? You have any difficult no room 

to compute, tightly packed yeah please make it a habit to get through this get a hang of 

this kind of theoretical analysis because otherwise you can easily get lost in this course. 

So, if you have difficulty (Refer Time: 18:21) will help you also. 

Student: (Refer Time: 18:25). 

Yes. 

Student: (Refer Time: 18:30). 

The relevance is exactly this one that is it will now tell me whether this link exists or not. 

Student: (Refer Time: 18:39). 



Well in general if I am given X and Y, what does covariance tell me right. So, this edge 

here that we have drawn graphically all they have not spelt it out, this h means the 

presence of a linear relationship because we are talking of linear work covariance will 

essentially tell me whether an edge exists that connects these two nodes alright. So, this 

epsilon that we have constructed essentially have allowed us to cut off these links; that 

means, by subtracting X hat star of Z from X and Y hat star or Z from Y graphically it 

amounts to severing this links; that means, now this graph is being redrawn without Z in 

this way epsilon X dot Z and here epsilon Y dot Z and now covariance between these 

two will tell me whether there is an edge here and that is the same edge that appears here. 

Because this edge exists regardless of these two pathways if it exists we do not know if it 

exists. So, we sever these two mathematically through this operation here is a graph and 

here is a mathematical operation. So, this mathematical operation here amounts to 

savoring these two links and now the statistical measure covariance will tell me whether 

this edge exists by looking. So, now I have taken Z away from the graph in other words I 

have taken the effect of Z and kept it aside. 

Oh yeah all that is possible here because the course is simpler when it to begin with that 

is all. If I use a non-linear one I can do that, it will only enhance the dropouts that I have 

do; we can use as I said this concept of conditioning is a very generic one. We are 

conditioning only in the linear sense you can of course, build a non-linear predictor for X 

in terms of Z then you will be conditioning on the non-linear effects, but at the moment 

let us understand how the linear world wars that is all, otherwise you are right; you can 

do that; somebody else yes. 

Student: (Refer Time: 21:00). 

Possible we do not know we want to check. 

Student: (Refer Time: 21:08). 

Between X and Z also yeah it is possible. 

Student: (Refer Time: 21:12). 

Yes absolutely. So, we are saying in whatever possible it is a very good point we are 

saying in whatever possible ways that effects X, let me take that into account, it is a very 



valid point, but what we want to do is; we want to remove the influence of Z completely 

on X along all pathways. I understand what you are saying is I should have only severed 

this link, what is a guarantee and that is a reason we are also conditioning Y. There is 

another concept called semi partial correlation, which will partly address the issue that 

you have raised. 

Your point is I should have only removed the effect of Z, direct effect of Z on X. If I do 

that; if I attempt to do that, I will still be left with an X after discounting which will 

contain some effects of Z right. See numerically I would never be able to figure that out, 

my effort should be to remove the effect of Z completely on X and that is why as you 

rightly pointed out, the covariance appears here and because the idea is to; although I 

have shown here graphically as if I am severing this link, what we are essentially doing 

is we are severing all links of X with Z; along all pathways, but it is a good point. 

So, do we have an answer from the other room, it is easy no; you should be comfortable 

doing this. What would you get when you start doing your covariance, do not have to 

necessarily do your expectations; you can do your expectation for example, here you can 

assume X and Y to be 0 mean and Z also to be 0 mean, if that makes your life 

comfortable, but when you have an expression like this; you can write covariance as here 

covariance between X minus b star Z times Y minus; in other words you can apply the 

expectations; assume X Y and Z to be 0 mean; just for simplicity so that you can simply 

write this as expectation of X minus b star Z times Y minus d star Z; what do you get. 

Somebody should have the answer, what is the first term that you see in this expansion. 

Student: (Refer Time: 24:05). 

Sigma X Y very good and then minus something here the answer, now if you have a 

difficulty you should seriously ask; is there a difficulty, you are stuck; are you able to get 

the answer. Simply expand this, when you are lost go in a stepwise fashion; now expand 

this and apply your expectations and then make use of the fact that b star is what I had 

written on the board earlier; b star is sigma X Z by sigma square z. 

Student: (Refer Time: 24:50). 

Such as. 



Student: (Refer Time: 24:52). 

Yeah, but since I have written X Y and Z to be of 0 mean that is why I said assume for 

simplicity. 

Student: (Refer Time: 25:04). 

Minus. 

Student: (Refer Time: 25:10). 

Let us see. 

(Refer Slide Time: 25:27) 

 

I have not given the expression for sigma X Y dot Z, but yes you can write it a very 

quickly; let me write here on the top. So, sigma X Y dot Z would be sigma X Y minus 

what do you get; sigma X Z times by very good that is correct. How would you compute 

the conditional correlation; all you have to do is to compute the conditional correlation 

you say it is the covariance; this covariance by square root of the product of the 

variances of the individual residuals and you should work out the math to get the 

expression that you see, but before we adjourn for today, let us quickly understand take a 

minute and understanding this expression that we have here. What does it tell us that the 

conditional covariance is the total covariance discounted; that is after discounting for the 

total covariance see sigma X Y is the total covariance or you can say the unconditional 



covariance; less this what does this tell me, if somehow Z did not affect X at all then 

what would be the case. 

The conditional and unconditional ones are the same; likewise if Y is not influenced by Z 

at all then again you get the same thing. Now how do we guarantee that this is going to 

measure the edge here you can prove that, but best is to look at this example. 
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And I will just leave you with this example; I have two variables X and Y X equals 2 Z 

plus 3 W and Y equals Z plus v; this is the example that I want you to work on in your 

assignment V, W, Z are all 0-mean random variables and they are all uncorrelated with Z 

and now evaluating the covariance between X and Y gives us this sigma Y X simple; 

that is if you take the simple covariance between X and Y taking into account the fact 

that all these variables are 0 mean; you end up with this answer 2 sigma square Z. 

But if you look at the relation there for X and Y X is made up of 2 Z plus 3 W and Y is 

being constructed as Z plus V. W and V are uncorrelated; which means the only common 

thing between X and Y is Z. So, there is if you look at the relations there is no way Y is 

directly affecting Z, Y is only apparently affecting X.  
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If I remove the effect of Z that is if i compute the conditional covariance then the rho X 

Y dot Z turns out to be 0; clearly telling me that Z was the only mediating or the 

confounding variable as far as X and Y are concerned, they are not directly connected at 

all. So this is the power of this partial correlation or partial covariance; it tells of course, 

you need to be given the measurements of the confounding variable, here the 

confounding variable is Z.  

So, the general question that one asks is do I have a knowledge of all the confounding 

variables, all the mediating variables answer is no. In fact, we may not even know the list 

of all confounding variables. Suppose I am looking at temperature and pressure or any 

other two variables, in the fire example the confounding variable was the severity, if you 

were to look at the confounding variable; the partial correlation in that case then it will 

turn out to be completely different from the correlation and the package that does that for 

you is the p cor package have given the information in the slides. 
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And all you have to do is use p cor from that routine and simply compute the partial 

correlation between those this function with those variables here. So, let us quickly do 

that and then we will adjourn. So I want to compute partial correlation, now between the 

firefighters, the damage and the severity and the p cor routine does that for me, it is not a 

part of r package; you have to install an additional root library for it and the way this p 

cor works is; you will have to supply the data frame or the matrix and straightaway it 

gives you the partial correlation. 
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So, it is very simple, you simply supply the matrix of your data that you have and of 

interest is this estimate that comes out here. So, if you look at these columns here, what 

do you see here? These are nothing, but your partial correlations. How do I read these 

partial correlations for example, I am interested in the partial correlation between the 

damage caused by the fire and the number of firefighters, where is that reported here. 

How different it is from your earlier correlation, this is negative sign. So, at least it is 

good and there is a strong correlation it there better be which is good news, alright. So, 

this is how partial correlation is useful in overcoming certain limitations of the 

correlation, you notice that partial correlation is also symmetric measure. 


