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So the correlation is denoted as rho is Greek symbol which is as I said standardized 

covariance; the numerator containing covariance and the denominators containing the 

product of standard deviations. I must not have mentioned this earlier, but standard 

deviations are nothing but the positive square root of the variance and you are all familiar 

with that. Straightaway tells me when covariance is 0 correlations is 0 and that mapping 

is established. 

Of course, we have introduced this measure we need to be assured that it is a bounded 

measure. And it turns out that this correlation is bounded above in magnitude by 1 which 

is the thing that we are seeking it is. Obvious from this definition that we have addressed 

the first issue which is sensitivity to the choice of units; that is no issue. 

The second issue is a boundedness which is also assured and I am not going to go over a 

proof of this, you can prove this using Chebyshev's inequality you can find this almost 

everywhere on the net. So, I am going to skip that. 

(Refer Slide Time: 01:26) 

 



But it is a very very important thing to remember particularly when you are answering 

certain questions in your exam do not give me absurd answers for correlation like 300 

255.7 and so on if you do. So, please say that you have redefined your correlation and 

please spell the definition. So, correlation as we have defined cannot exceed magnitude 

of 1 in under any circumstances. 

(Refer Slide Time: 01:58) 

 

Now, there are two things that we want to ask that is what does this mean right and 

likewise what does unity correlation. And then of course, the intermediate values. We 

have already said that when there is no covariance, I mean though no covariance or no 

correlation there is no linear dependence. We will be interested in this part now which 

will kind of help us partially answer or at least convince ourselves of this answer that we 

have given to the first question. 

So, let us look at the case where correlation hits a value of 1. And it hits a value of 1 

when y and x are perfectly linearly related, well with a slight relaxation on that a fine 

relation. When y is alpha x or you can say y is alpha x plus beta or it can be the other 

way around to it could be x equals alpha y does not matter; remember correlation or 

covariance does not worry about the direction of relation. 



(Refer Slide Time: 03:12) 

 

So, let us look at this case of y equals alpha x plus beta with some abuse of terminology 

let us call this linear, although it is not strictly linear. 

(Refer Slide Time: 03:22) 

 

And this is something that you must have also seen in the NPTEL course, but let us if 

you just quickly go over it and define and derive the value of correlation for this kind of 

a situation that is y equals alpha x plus beta. Let us assume x to be what I have done here 

is have ignored beta, because you can also actually prove when beta is not 0. For 

simplicity let beta be 0 then mu y is alpha mu x and sigma square y is alpha square sigma 



square x. Remember we have talked about the scaled random variables, how do the mean 

and variance scale we use those results here and then you plug in all the expressions 

therein. And straight away you see that correlation takes on a value of plus or minus 1, 

depending on the sin of alpha. And negative alpha would mean that as x increases y 

would decrease and a positive would mean that x and y actually vary in the same 

direction. 

So, it is clear that 1 y equals alpha x or even alpha x plus beta you can show this for 

alpha x plus beta as well that correlation hits a value of unity in magnitude. So, now I 

know that whenever I see correlation value of 1 y and x are linearly related. But the bad 

news is that you will never be able to see this value of correlation hitting one in practice. 

Even if y and x you know were perfectly related you would have noise or some other 

disturbances coming in which will take down the value of correlation below unity; how 

much the correlation will drop below unity depends on the extent of uncertainties and so 

on. But at least I know now that when correlation values are very close to unity; that 

means, the linear model will do a very good job of predicting one variable given the 

other. So, that is the interpretation. 

What about the other way around, can I show this that this is an if and only if condition; 

yes, but will not go into that. Now, very soon we will also look at the consequences of 

correlation that is under what situations correlation values take on values between 0 and 

1 in magnitude. But before we do that let us step back and now put in perspective the 

notion of correlation and independence. 



(Refer Slide Time: 06:07) 
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When two variables are uncorrelated as you see on the slide; and we have seen this in the 

last class as well when sigma x y 0 or even when rho is 0 expectation of x y is a product 

of expectations. And when two variables are independent then you have the joint density 

being factorizable into product of marginals. And there was one more condition that we 

talked about when it comes to when it came to dependence between x and y which was 

based on conditional expectations. And that was; so let me write this here slightly 

between, so this is the notion of independence. And there lies an intermediate result 

which is that of expectations and conditional expectations. 



So, here you have uncorrelatedness and then here you have whatever in between when 

there is no name to this you can say that it is conditional expectation is the same as 

unconditional one I think that made a mistake here. You should correct me feel free, 

sometimes mistakes are deliberate sometimes it is just the flow. And then you have 

independence here. So, the independence is the strongest one and if you look at the 

direction of implications independence implies this which in turn implies; that means, 

your independence condition implies both this. Remember, what we mean by 

independence is absolutely no relation between x and y, you cannot fit a model so forget 

one of the other variables for prediction. You just use individual histories to make your 

predictions 

Now, this traffic is in general not there and this traffic is also in general, that also does 

not exist. So, it is one way implication that which means when two variables are 

uncorrelated for example, it does not necessarily means they are independent. And 

likewise if two variables are uncorrelated it does not necessarily mean that the 

conditional expectations are identical. 

So, if you are able to show this then you do not have to show any of these. From a 

modeling viewpoint what this means is; if there is no relation; that means no model can 

be built linear or non-linear does not matter. But, when you have determined that no 

linear model will work it does not mean that non-linear model also do not work. Let me 

give you a very simple example that will hopefully convince you further. So, let us say 

here I have y equals x square, you do not want to have white noise all the time some 

colour noise will help. So, y equals x square, so this is the relation and let us say and let 

us assume that x has a Gaussian distribution, let us assume that you know it is a 0 mean 

just for simplicity. 

Now, is this a linear relation or a non-linear relation, right? Now if I want to compute the 

covariance between x and y what would be the answer, how would I do it and what is the 

answer. You are given that x is 0 mean for convenience do not assume variance of x is 0 

what would be the covariance, how do you compute it? X is a Gaussian distributed 

variable you cannot compute. 

Student: (Refer Time: 10:31). 

Probably be able to give answer next week. 



So, I emphasized an important point x is a Gaussian distributed random variable. When 

you are in confusion I think we used to follow this tricks even our school days. I do not 

know anything a write the formula, some of the students I still see. If I ask a question all 

the theory that comes to the mind is written on answer sheet. Basically the instructor or 

the examiner is being asked to take whatever is relevant and apply to the problem and get 

the answer. The student is demonstrating the ability to remember the associated theory. 

Which is not a bad idea, but we would like to see application of that theory. No, 

seriously what do you do in times of crisis you will just throw out whatever theory you 

know and say you know take it or leave it this is what I know. Especially as you mature 

and you are getting closer to your under graduation you become more and more bold and 

practical. 

(Refer Slide Time: 11:44) 

 

So, expectation of x y, we just start from that expression right minus product of 

expectations. Now can you proceed further, what happened? What is it? 

Student: (Refer Time: 12:14). 

Why is e of x cube 0 where is e of x cube coming from? From the first term right. 

Second term is 0, I have said assume mean to be 0 that is why I said let us keep it simple. 

X is a Gaussian distributed random variable with 0 mean. And what you are looking at is 

a third moment of x and skewness. This is called skewness. Skewness is a measure of the 

symmetry of the pdf. And Gaussian distribution is a symmetric one; I mean pdf is a 



symmetric one. Therefore, you can say the skewness is 0, so the answer is 0. You would 

also always like the answers to be 0 not the marks. And this is a good thing here, what is 

it tell us about the relationship between y and x? 

Student: (Refer Time: 13:07). 

No linear relationship right, but if you add it, so it is nice what you have said is nice no 

linear relationship, but the reality it is non-linear. Do you see the non-linear relationship 

y equals x square is a non-linear one. So, just because two variables are uncorrelated it 

does not mean that there is no non-linear relationship. And do not you take this example 

a bit further you say no always it means quadratic. So, it is very simple example to drive 

home this point. 

Now the good news which is always got to do with Gaussian; the good news is that if x 

and y have a joint Gaussian distribution then this traffic opens up, otherwise there is a 

stop sign. The moment it sees that x and y are joint Gaussian the gates open, and you can 

prove this theoretically. If x and y have a joint Gaussian distribution I can write that then 

these gates open up one implies the other. That is why again you can see why Gaussian 

distributions are very popular, they have some very very nice properties. Of course, here 

it is a joint Gaussian that we are looking here. 

And there is yet another thing to know about this independence, which is when x and y 

are independent we have written expectation of x times y as product of expectation, but 

there is yet another implication which is that expectation of product of functions of x and 

y are the product of the expectation of the respective functions. This is also true  

Now, that is fairly easy to see intuitively. So remember, when imagine that g of x is 

some x cube and h of y is y square; you are looking at some joint fifth moment of x and 

y. And once you write the joint fifth moment the theoretical expression it will involve the 

joint pdf and then because they are independent you can express a joint pdf as a product 

of the marginals then you can separate the double integral that you get for the joint fifth 

moment. And you can then see that each of these integrals is expectation of g of x and 

the other one is expectation of h of y. These are some very useful properties that are used 

in deriving a lot of theoretical results; any questions on independence, uncorrelatedness, 

anything. 



(Refer Slide Time: 16:35) 

 

Of course, we will skip this we have already said two variables are uncorrelated if the 

conditional expectations are identical. And the proof of this is given in my textbook I 

have given the page number; will therefore go past in fact the proof uses the iterative 

expectation result that I have given earlier. 

(Refer Slide Time: 16:46) 

 

So, let us return now to this question of what do I take when I get correlation values 

between 0 and 1. Specifically, what kind of situations actually gives me correlations 

between 0 and 1? And to do this we will again go back to this model that we had earlier. 



(Refer Slide Time: 17:25) 

 

Remember earlier we wrote y equals alpha x plus beta, but now we shall write y equals 

alpha x plus some epsilon. Why are we writing it this way? Because we want to say that 

there is something in y that a linear function of x cannot explain; that epsilon signifies 

whatever your alpha x which is a linear function of x cannot explain, you can have a beta 

but that does not matter. 

When do I run into these kinds of situations, whenever I have let us say measurement 

noise for y let us say why is a measured quantity, x is some random variable, y is a 

measured variable. Then epsilon could contain measurement noise or epsilon could 

contain effects of unmeasured disturbances that are also that are contributing to y. And 

on top of all of this epsilon could also contain modeling errors. What we mean by 

modeling errors is that maybe the true relationship between y and x is non-linear and I 

have only included the linear part. So, epsilon is like consolidated whatever affects of 

sensor noise unmeasured disturbances and modeling errors and so on; all of that is 

lumped into epsilon. And when this is the case you can actually show that the correlation 

between y and x is what I have given on the slide. 



(Refer Slide Time: 18:52) 

 

Which is one over, well let me write the magnitude square root of 1 plus sigma square 

epsilon by alpha square sigma square x. 

Typically, I derive this result it is not difficult at all in fact, I think it is given in the text 

you can go and look up the text or you can derive it yourself. But let us look at the result 

here and try to understand what is happening. So, what you see in the denominator you 

see sigma square epsilon over alpha square sigma square x, of course you have 1 here. 

Now, this ratio here is a very important quantity that appears in all parameter estimation 

problems or all signal analysis problems and so on known as the inverse of the signal to 

noise ratio. The signal to noise ratio is defined as alpha square sigma square x by sigma 

square epsilon. What is the signal that we are referring to here? 

Student: (Refer Time: 20:06). 

Really, as you said the signal is y. And what do we mean by y here? Y is actually alpha x 

plus epsilon. So, how can I signal be y? 

Student: (Refer Time: 20:24). 

Correct. So, what is the signal then? So, here this is called the signal to noise ratio which 

estimated sigma. 

Student: (Refer Time: 20:49) 



Alpha x part, why do we. 

Student: (Refer Time: 21:02). 

That is fine, but what is the signal that we are referring to somebody said alpha x y. 

Student: (Refer Time: 21:12). 

Ok. 

Student: (Refer Time: 21:32). 

Ok. 

Student: (Refer Time: 21:41). 

So that is a separate question we will answer that. The first part is a lot of you have 

gotten it correctly but you are looking at from your own application viewpoint. The 

signal that we are talking of in this definition is alpha x. You can essentially, why this is 

called signal to noise ratio is many in many applications I am interested in whatever 

signal is here it is a linear function, but I am interested in some truth; in knowing the 

truth, but typically truth comes in a corrupted form when we measure the truth. And that 

corruption here you can call it as epsilon, but it need not be corruption all the time as I 

said epsilon also contains modeling errors. But keeping that aside when you are looking 

when you are standing at the measurement side you would like to hear alpha x, but you 

are hearing alpha x plus epsilon. 

So, your ability to discover this linear relationship between y and x clearly depends on 

this ratio. Why, because if this ratio is very high then what happens to correlation, it 

nears one. In fact, as this ratio hits infinity the correlation will hit one. In the limit as s n r 

goes to infinity the correlation goes to 1. And when correlation hits one then you have a 

perfect linear relationship you will be able to estimate that linear part very well. 

Although we introduced s n r in the context of linear models s n r in itself is a generic 

concept. It is a concept that tells you how much power if you talk in terms of signal 

analysis how much power is contained in the truth versus uncertainty. Epsilon is your 

uncertain part sigma square epsilon is measure of the uncertainty. Remember we said 



variances are measures of uncertainty so that also answers to your answers your question 

as to why we do not have mu and why we have sigma squares. 

Because mu’s are not measures of uncertainties; mu is only a measure of the center the 

measure of uncertainty per measure there are many measures a measure of uncertainty is 

variance. Remember if variance is 0 then there is no uncertainty. That is one of the 

reasons why that you have variances here. But this was not really defined up front and 

then it made it is way, s n r was more of a discovery in hindsight. That is people started 

asking what happens to my parameter estimate, how good is my parameter estimate and 

so on. 

When you started answering those questions they started to see the appearance of this 

ratio. In fact, later on and estimation theory will show that the signal to noise ratio affects 

the precision of your estimate, how precisely you can affect you can estimate the 

parameter of interest. If s n r is very high then you can estimate the parameter in a more 

precise manner; higher the s n r better the precision. 

Here higher the s n r closer the correlation to unity and your ability to fit a linear model 

or you can say the ability of a linear model to do a good job of predictions. There are 

several different ways of looking at it. So, s n r was introduced more in hindsight rather 

than up front. You can define as a ratio of mu of y or mu of alpha times mu x by mu 

epsilon, but it would be useless and also mu epsilon can be 0 remember. So, that will 

then become an ill defined quantity. 

So, this is something that we will revisit in the parameter estimation discussion as well, 

but you should keep this in mind that always you will have the signal to noise ratio 

coming into play in every stage of your data analysis, right from your correlation to your 

parameter estimate. For example, if I give you y that is observations of y and 

observations of x and I asked you to estimate alpha we can show later on that is the 

precision of alpha or the variance in alpha is again related to this quantity here. And by 

the way this is specifically called the output signal to noise ratio, it called s n r out. You 

can also define s n r in; so the s n r in would be simply sigma square x over sigma square 

epsilon. 

Now, this is based on the idea or this imagination that x is going into some process and 

producing alpha x here and here is your epsilon adding up to produce y. Essentially, x is 



going through a gain pure gain system and adding on I mean the uncertainty adds on to 

alpha x then you have a measurement of y. So, if you think of x as input and y as output 

that ratio is called the output signal to noise ratio and this ratio here is known as the input 

signal to noise ratio. The input signal to noise ratio is also an important quantity. 

By now you must be actually kind of slowly getting into the groove that correlation has a 

very strong connection with linearity. And we have already shown when y and x share a 

linear relationship, perfect linear relationship then the correlation hits 1. When there is 

something more apart from a linear that is from a linear function of x then the correlation 

will dip. To the extent to which it will dip depends on how much is not being explained 

by this linear function of x. The extreme cases when alpha is 0 and purely why is epsilon 

then the correlation between y and x will be 0. As you can see because this will hit a 

value of infinity when alpha is 0 and as a result s n r will go to 0. 

So, in practice now generally we think that by looking at correlation I can conclude 

whether the relationship is non-linear or not. Unfortunately that is not true, when 

correlation is below one as this example suggests it is not possible to ascertain whether 

the dip in the correlation is because of a non-linear relationship or because of noise or 

because of disturbances we do not know. All we know is that there is some epsilon, 

besides alpha x and that is all I can. If I want to know whether a non-linear relationship 

exists between y and x then I have to conduct tests of non-linearity, and that we will not 

get into. 


