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So, yesterday we celebrated Independence Day, today we will celebrate covariance day. 

We will learn a lot about covariance today; mostly about correlation, but we will also 

talk about independence and a lot of things and I should say that these are some of the 

lectures which are central to your ability to understand the auto covariance functions or 

cross covariance and even partial auto covariance functions that we will later learn in the 

context of random signals. So therefore you need to pay attention, apart from that you 

should also ask any questions that you may have and not wait until the course is over, so 

feel free, relax and learn. 

So, let us begin with the covariance from where we left off essentially in the last class 

and as I said very often and this is not just in time series analysis, you will see this 

everywhere right from the animals to the human beings everywhere, in every sphere we 

are trying to correlate stuff you know I saw this and then this looks similar to that and so 

on, all of that is based on correlation. Of course, specifically in statistical analysis we are 

interested in knowing whether the variation in one variable is influenced or is influencing 

any other random variable or a bunch of random variables, but we will restrict ourselves 

to a pair of random variables and a statistical measure of such co-variation is a 

covariance which also happens to be the second moment of the joint pdf. 
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And as I mentioned in the last class, covariance can be also written conveniently as you 

see on the slide as a difference between expectation of products and the product of 

expectations. 

And once again the expressions that you see here on the slides are useful for theoretical 

analysis, at a later stage we will learn how to compute covariance’s given data those are 

called sample covariance’s and so on. We will not worry about it as of now, hopefully if 

today, but if not today; the first thing tomorrow morning I will kind of go through an 



example in hour for you as to how to compute sample covariance. The purpose of 

introducing this covariance measure is to see how two variables co vary and we are 

talking in the context of random variables, covariance can also be thought of between 

two deterministic signals that say, but we will talk about that later. 

Now, very soon we shall learn and as you must have also learned in the NPTEL course 

on introduction to hypothesis testing that covariance is a measure of linear dependence 

alright which means that when this quantity covariance is 0, we rule out the absence of 

any linear relationship between two variables and the lot of other subtle but very 

important things that we shall learn. 

Now, before we move on to understanding the properties of covariance, the significance 

of covariance we also made a statement that as far as linear random processes are 

concerned or linear models are concerned, it is sufficient to know only the first and 

second order moments, we will go through that but before we go through that let us 

understand how this notion of covariance extends to a vector of random variables, this is 

how we define for a pair of random variables, but when I have a vector of random 

variables and I denote this vector X with an underscore here. 

Let us say I have here M or n, e, m random variables; it does not matter I can now extend 

this idea of covariance to the case of vector of random variables by constructing what is 

known as a covariance matrix that you see on the slide as well and this covariance matrix 

is made up of individual variances, that is variance of the individual random variables 

along the diagonal and the co-variances between a pair of variables along the off 

diagonals. So, if you were to look at the first row; the off diagonal elements you would 

have sigma X1, X2, X1, X3 up to sigma X1, XM. 

And likewise the elements here as well you can guess what they are and it does not take 

too much effort to realize that covariance or the variance covariance matrix is a 

symmetric matrix. 

Because covariance is a symmetric measure, it has no notion of directionality embedded 

in it and will realize that in a different way when we talk of the connections between 

covariance or correlation and regression, we have not yet spoken about correlation, but 

we are not too far away from it. So, this variance covariance matrix is one of the central 

quantities that you will encounter in all forms of statistical data analysis; there is no 



escape from it. Therefore you should be comfortable with this quantity, it is a very 

straightforward quantity; variance along the diagonals and co-variances along the off 

diagonals. 

At this point I also would like you to broaden your treatment or understanding of what is 

a random variable. Until now you have been thinking of random variables as outcomes 

of some events but that need not be the case all the time. 
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In a lot of situations, particularly in parameter estimation; the estimates parameter 

estimates that you obtain could also be the random variable vector or you know if you 

are estimating a couple of parameters then the estimates could also be those random 

variables and so essentially in any parameter estimation problem. Let us say you are 

estimating; let us denote the parameter vector by theta and hat denotes the estimate then 

this vector is made up of the estimates of the individual parameters. Let us say there are 

p parameters; instead of m you have p that is only difference, but those are just dummy 

variables these are also random variables. 

Because do you know why; why am I claiming that the parameter estimates in any 

estimation exercise can be thought of as random variables. 

Student: (Refer Time: 07:10). 

It is sorry. 



Student: (Refer Time: 07:15). 

It is estimated from random variables; so what kind of random variables participate in 

the estimation. Can you elaborate a bit more? 

Student: (Refer Time: 07:24). 

Ok. 

Student: The estimates can be different from co different surface. 

Does it make it random? 

I mean the first answer was pretty close as just seeing if anybody could elaborate on that. 

How do you estimate? So, let us take the simplest case where you are estimating mean. 

We know the theoretical definition of mean and we know how we estimate mean 

typically which is through the sample mean and how do we calculate the sample mean 

there is a record of data which is statistically called as a sample. A sample does not mean 

a single observation; the sample is a collection of observations but one data record. So, if 

I were to look at the estimation of mean through the sample mean then this is what I 

would do mu hat would be 1 over N sigma; let us say I am looking at or 0 to N minus 

does not matter. So V case, are the observations; that I have in that single sample and I 

just compute the simple average to get the estimate. 

Now, on the basis of this equation can we explain why mu hat is a random variable, mu 

hat is a parameter estimate. What is the parameter that we are estimating mean? Mu hat 

is an estimator or you can say the value itself is an estimate of the mean. On the basis of 

this equation, can we come to the conclusion that mu hat is a random variable right 

because why because simply each observation is a random variable; by our definition of 

a random signal. 

And this randomness as you had said actually propagates to mu hat. So, the inherent 

DNA is randomness and that DNA propagates to mu hat. But in a different form how it 

manifests, we will learn in the estimation theory, how the uncertainty in V K propagates, 

how we mean by meaning how we are asking a quantification of uncertainty; that means, 

if I know for example, the mean and variance of V case, can I determine the mean and 



variance of mu hat that is what we mean by how, we will learn to do that later on but for 

now it is pretty clear that mu hat is a random variable. 

Likewise any parameter estimate that normally one constructs is some function of your 

data set v; let us say V N is your collection of N observations and you have a vector of 

functions giving you vector of parameter estimates. So, the randomness in these 

observations propagates through this transformation to theta hat. Therefore, theta hat in 

its own right is also a random variable vector or you know in the simplest case of scalar. 

So, whatever we are learning here, whether it is mean, covariance, distribution any other 

moment; all those concepts equally apply to a parameter estimates as well and it is very 

important to get this clear in our minds. Which means for example, when I move to 

parameter estimation; I will run into quantity known as the variance covariance matrix of 

the parameter estimates, so which would look like this. 
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So sigma theta hat would like the variance covariance matrix of x; would consists 

variances of the individual parameters along the diagonals and the off diagonals would 

contain the covariance between a pair of estimates and of course, you know it is a 

symmetric matrix; I am not going to fill the elements here and one has to be comfortable 

in interpreting that sigma theta hat. 

The diagonals contain the variance of the individual parameter estimates. So, sigma 

square theta 1 hat for example, is a variance or the variability that you see in the estimate 



number 1. Remember we are talking of estimates not the parameters, so should not be 

confused with between the parameters and their estimates. Parameters for now are being 

treated as deterministic quantities when we move to the Bayesian world; that is when we 

talk of Bayesian estimation. At that point we will treat even these parameters as random 

variables but let us not worry about that. At the moment, the parameters are random are 

fixed quantities which we do not know and parameter estimates are random variables and 

we have already explained why they are. So, it is important to understand this sigma 

square theta 1 hat or any of these elements in sigma theta hat may be upfront at this point 

itself. 

So, let me actually ask you how would you interpret sigma square theta 2 hat, what is a 

correct interpretation of sigma square theta 2 hat. 

Student: As we varied the data sets we can, 2 hat. 

And then what is sigma square theta 2 hat measured. 

Student: Spread of them. 

Spread of that, so precision correct, so the simple answer is remember we are computing 

for example, here I am computing mu or mu hat or estimating mu from one data record. 

So, suppose I denote the data record by I or the realization by I, I can repeat this for all 

the R realizations that I may have. Now when you talk of sigma square theta 2 hat, what 

you are looking at is the spread or the variance of theta 2 hat, across all possible 

realizations that you can ever generate; that means, entire ensemble of your theta 2 hat.  

It is not possible to do that experimental because in general you may need to have 

infinite number of realizations; that means, entire ensemble which you may not have but 

theoretically if you had it as a thought experiment then for each realization you compute 

your theta 2 hat and then you have as many theta 2 hats. As the number of realizations 

and then it has its own spread, it has its own distribution and you can do this even in R 

for example, Monte Carlo simulations are kind of a simulation way of replicating this 

theoretical experiment. 
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So, sigma square theta I hat in general is the variance of the theta I hat across whatever 

you see across all the records. 

Now what about the off diagonal elements, how do you interpret the off diagonal 

elements. So, I pick sigma theta 1 hat, theta 2 hat; it was easier to explain sigma square 

theta I hat. Of course you know you understand why we are looking at the spread 

because the spread gives us a measure of the precision and we will talk about more that 

technically later on. So, let us ask now; how do you interpret sigma theta 1 hat theta 2 I 

hat or in general sigma theta I hat, theta j hat. 

The same way as you interpret this; how do you interpret sigma x 1, x 2; it is a 

covariance. So, now we have to be careful right it is covariance; what is covariance 

measuring how x 1 and x 2 vary together and to jump the gun a bit linearly very together. 

Likewise when I am estimating more than one parameter, it is highly likely that the 

estimate of one parameter that is the error in the; in fact, sigma square theta I hat is a 

measure of the error in your theta I hat; the theta I is or you can say the error in the 

estimate theta I hat. When you are estimating more than one parameter each of this 

parameter estimates will have an error. Sigma theta I hat theta, j hat tells us how the error 

in one parameter estimate is influencing the error in another parameter estimate. 

Because you are estimating them jointly right which means that there is a degrees of 

freedom issue, you have n observations with you and you are trying to estimate p 



unknowns; it is likely that when you try to estimate one, the other one also is influenced 

by your ability to estimate this correctly. So, it is likely that in any situation the error in 

one parameter estimate can affect the error in another parameter estimate but it is also 

possible that your sigma theta hat is a diagonal. 

What do you make of such situations? 

Student: (Refer Time: 16:56). 

That is but with respect to parameter estimation what do you mean? 

Student: (Refer Time: 17:03). 

Correct. So, you can estimate them separately, you do not have to estimate them jointly. 

We learn all of this in technical details and so on and we will come across Cramer of 

bound and Fisher information matrix and so on when we talk of estimation theory. But I 

am just showing the seeds now, so in summary whatever you are learning for the case of 

random variables, whether it is in mean, variance or any other moment or your joint 

moments like covariance or the notion of independence and so on applies to any random 

variable. It need not be specific to the outcome of some event and so on. So, that is 

something to keep in mind any questions on this variance covariance matrix fine. 
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So, let us move on and now also of course in passing let me also show you the actual 

definition of your variance covariance matrix is nothing but expectation of X minus mu 

where X is your vector times X minus mu transpose but that is kind of a straightforward 

extension of the univariate definition of variance for the univariate case or covariance for 

the bivariate case. So, we will of course keep making use of this expression time and 

again in our theoretical analysis. 
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Any question yes. 

Student: Why measuring the parameter so. 

Estimating the parameters. 

Student: Estimating the parameter when we get the cross steps. 

Yes. 

Student: So is there possibility that symmetric of the matrix can be broken from the 

possible measurement estimating the parameters. 

Even in process of estimation. 

Student: In process of estimation. 



Well it is a good question; I will answer the core part of your question and then later on 

technically will answer that question later on. It is possible but you can avoid that by 

making sure that whatever expression or so called for formula; recruit term for it that you 

will use to estimate this, in practice again this is a theoretical quantity, from data you will 

also be able to estimate this. So, from data you will construct an estimate of sigma theta 

hat. Whatever expression that you use for obtaining that sigma hat, theta hat should it 

should ensure that you have a symmetric matrix. 

And if you do not then; that means, it does not qualify to be an estimate,, but is a good 

question yes; when estimating certain quantities you have to respect and preserve certain 

properties of the theoretical ones, but yes we should make sure that that is the properties 

preserve. So, here are some quick properties of the covariance matrix and in general 

covariance as I said it is a symmetric measure which means it does not know which 

cause the other that is very important, I will not be able to infer both the directionality of 

causation and the physical causation. I will not be able to say that if x is correlated with 

y, then x has physically cause y; you need not be true, I can take any two random 

variables in the world and see that it is likely that I will get a very strong correlation that 

does not mean that they are strongly correlated. 

So, covariance is always a statistical measure of the interdependence but not a physical 

measure necessarily. So as scientists, as engineers and as people with common sense we 

should not be correlating any two things just because I have a computer and I can 

compute correlation but of course I mean if you want to do for the fun of it, you can do it 

and also the covariance matrix itself is a positive definite matrix and this covariance 

matrix as I said is ubiquitous in data analysis and if you take for example, principal 

component analysis, some of you may be familiar with it. An eigenvalue analysis of the 

covariance matrix tells us how many linear relationships exist between the random 

variables, so we do not go into that there is a course on multivariate data analysis or 

maybe another course in machine learning where you will learn all of this stuff. 

But as you can see the quantity variance covariance matrix has far reaching presence in 

data analysis. So, let us move on and discuss the more interesting part which is that the 

covariance is a measure of linear relationship. 
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I am not going to prove that covariance is, I mean it in a very rigorous way but we will at 

least go through a part of the proof that covariance is a measure of linear dependence 

which means that what we will do is; we will show that when two variables are linearly 

related covariance kind of standardized covariance reaches a maximum and the other 

part the reverse part is not something that we prove and we will buy just way of 

inference, we will say that from the relation that we see that when the x and y are linearly 

related, covariance reaches a maximum in a standardized sense. From there we will infer 

that when two variables have no linear relationship then x and y are uncorrelated. 

So, whatever see you see on the slide when two variables are uncorrelated, there is no 

linear relationship and the vice versa is also true; we may not prove the entire part of that 

statement but you should just remember that, but we will do a bit more analysis now. 
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So, in order to show that covariance is a measure of linear dependence and also to be 

able to use covariance practically, it is important to introduce this notion of correlation 

which addresses two deficiencies or shortcomings of covariance when it comes to using 

it in practice; one is that as you can see in the expression here covariance is sensitive to 

the choice of units of x and y. For example, if I am looking at temperature and pressure; 

we know from thermodynamics that temperature and pressure of a gas are highly 

correlated might assume fixed volume or whatever. 

Now, think of x as a temperature and previous pressure does not matter and you can 

compute covariance; obviously, the value of the covariance will depend on what units I 

choose for temperature and pressure, I could choose Fahrenheit and bar for pressure, 

Fahrenheit for temperature or I could use Kelvin and some other unit maybe Pascal for 

pressure and so on. So, the value of the covariance is going to be sensitive to the choice 

of units that I choose for the random variables; that is one issue which means that by a 

clever choice of units I can make look covariance very small or very large. 

Secondly again as a corollary of that, covariance is not a bounded measure and it is hard 

to work with bounded measures in data analysis, I would like to know have some ceiling 

and also you know some flooring for this whatever measure that I use so that I know 

whether dealing with a low dependence or a high linear dependence or no dependence 

and maximum or linear dependence and so on. For these two reasons, we introduced this 



notion of correlation which is nothing but a standardized covariance as you see and you 

must have seen this expression many a times in various say different situations. 


