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Very good morning, so let us get a going on bayesian estimation, I explain to you 

yesterday the essential principle of bayesian estimation you start with the prior 

uncertainty on the parameter and again to remind you in the bayesian frame work, we 

assume that the truth is not fixed as in the classical methods, but then of course, the truth 

is assume to be random, but the way to perceive it is that it is not the truth per say that is 

random, it is our knowledge of the truth that is kind of a uncertain and we essentially 

mask we are looking at the truth plus our uncertainty together and the hope is that the 

data will refined that uncertainty and get us a more precise estimate. 

So, therefore, we have a concept of prior and posterior and the main or the central task in 

bayesian estimation is in the computation of this posterior given this prior. 
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And of course, the likelihood you can say or the conditional observations of the 

measurements or parameterized p.d.f conditional p.d.f of the observations given the 

parameters, which you have to assume. So, the user has to supply both f of theta and f of 



y n given theta and C is a constant stemming from the fact that, we had this f of Y N here 

and we said that f of Y N is independent of the theta. 
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Nevertheless it is a constant that has to be estimated it you cannot ignore it, but the nice 

thing is you do not have to evaluate f of Y n, you treated as a constant and evaluate the 

constant in such a way that this left hand side is the legitimate p.d.f, what we mean by 

legitimate p.d.f is a area under it should be one. 

So, that is how you estimate the constant that is it. So, beyond this as I said it is the users 

call as to what the user would like to do with posterior, but the main point again apart 

from the fact that, there is a start difference between the philosophies of the classical 

methods and the bayesian methods, the second significant difference is we obtain 

interval estimates, we do not have obtain point estimate; however, we can derive point 

estimate out of this distribution of theta in a few different ways, I will go through to that. 
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For example, I could say that I would like to pick the average of the estimates that I have 

obtain; f of theta given by is the p.d.f of conditional p.d.f of theta given by after the 

experiment has been perform, I can ask for the average which turns out to be the 

conditional expectation. 
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So, the first point estimate that I construct is the mean. In fact, the conditional mean 

specifically of theta, in other words expectation of theta given Y which is nothing, but 

the average of f of theta given y. Now that we have decided to work with some number 



an average of the interval of estimates that we have obtain, we can turn to other averages 

as well; what do you mean by other average? This is we can look at median of that is 

condition median again or we can look at mode once again conditional. 

So, we can look at any of this we can work with the any of this estimates and derive a 

point estimate, which is completely the flipped way of what we have been doing in the 

classical methods. So, whatever point estimates that you pick fortunately now, you can 

show that picking any of this point estimates amounts to solving an optimization 

problem. So, here we are not solving any optimization problem, you must be you must 

have observed by now, we are not maximizing likelihood we are not minimizing 

approximation errors nothing. We are just saying I will compute the posterior and from 

the posterior I am going to derived this point one of this estimates and the nice result is 

regardless of which of this point estimates you work with, you would essentially be 

solving an optimization problem at behind a since, where you would be minimizing what 

is known as risk function or a cost function. 

 (Refer Slide Time: 05:00) 

 

So, let us quickly go through this 3 estimates different point estimates and ask what is the 

equivalent optimization problem I would be solving, I would still not be solving that 

optimization problem, but it is heartening to know that these estimates respective 

estimates are optimal in some sense. 
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So, the first in order is this conditional expectation, which is known as the bayesian 

estimate. Although the general bayesian estimation when we talk about it, it always 

refers to computation of the posterior, specifically when you say I am working with the 

bayesian estimate, you are working with this conditional expectation which also happens 

to be the minimum square mean square error estimate; that is this minimizes the sum 

square error between the estimate and the truth.  

If we are estimate is theta hat then you would be essentially this is a solution minimizing, 

find theta hats as the this is minimized and that is the condition expectation you know 

that already right and that is exactly what your equation is telling you, equation 23 telling 

you the cost function that you are minimizing with the slight change of notation. But you 

should understand that by working with this conditional expectation, you are essentially 

solving an optimization problem of this tipper, where you are minimizing the mean 

square error. 

So, this is very nice because early on in estimation we said I would not know the truth, 

so therefore, I can never solve this problem, but here is a solution to that problem 

without knowing theta naught, we are actually able to obtain the minimum mean square 

error estimate and that is why the bayesian estimation is or the bayesian estimate is very 

good.  



The celebrated Kalman filter is actually a bayesian estimator, you can show that it is a 

some minimum mean square error estimator and of course, we have already known we 

have we already know what is this why is this result optimal as we have been saying the 

conditional expectation is the minimum mean square error estimator and how would you 

compute this from the posterior using this expression? Of course in practice you may not 

have a analytical expression for f or you may have that depends on the situation, it 

completely depends on the situation. In early days of bayesian estimation may be or the 

last two decades or so, the prior and posterior sorry the prior and the likelihood, but 

chosen in such a way that you would get an analytical expression for the posterior. 

So, let me give you an example, suppose I assume that the measurements have Gaussian 

distributed errors condition on for the fixed value of theta, f of y given theta is Gaussian 

like we went through the example yesterday; then what prior should I choose so that I 

can obtain at close from expression for the posterior? The likelihood will have a closed 

form expression, I can write an analytical expression for the joint Gaussian p.d.f, but 

there is no guaranty that when I multiply 2 p.d.fs. I can show that the resulting p.d.f has 

some closed form expression, simply because as multiply 2 p.d.fs it does not mean that I 

will always be able to expressed that the resulting product in the form of a known p.d.f. 

When the priors are chosen such that the posterior p.d.f could be expressed in a known 

p.d.f form, those priors are called conjugate priors. 

So, that was the basis for choosing the prior, it seems the bit strange because we said 

prior is suppose to represent my knowledge prior knowledge of theta and now you are 

saying prior is driven by computation consideration, yes that is true. When you are 

following short of computation power, you will have to make some compromises and 

that compromise was made here then that question that arises in mind is what if the prior 

that is governed by computation convenience is not the same as the prior that I would 

like that I have a about theta, what if they 2 or different, will the estimate go (Refer 

Time: 09:36) will estimate been error? No, actually in general in bayesian estimation 

even if you were to choose a prior that is different from the so called true prior. 

You would still end up obtaining descent estimates, but the number of observation that 

you have to collect to obtain a certain precession is going to change, what is the premise 

behind bayesian estimation? You start with some uncertainty before the experiment, 



perform the experiment analyze your data so that you obtain a more precise estimate, that 

is lesser uncertainty. 

Suppose I were to fix the uncertainty, I were to say that I would like to have an estimate 

with the certain precision and I start with prior 1 which is the truth and prior 2 which is 

different from the true prior, then would it make a difference to the precision that I want? 

No. I can still achieve the precision that I want, but where it makes the difference 

number of observation that will require, that would be require to achieve the desire 

precision. When I show the example part of this can be understood, the other part may be 

you have to simulate and figure out, but that is a point because this is a question that is of 

an asked when by beginners in bayesian estimation, what if I choose a wrong prior a 

nothing like a wrong prior, we will take more observations to achieve a certain precision. 

So, the to go back to the choice of prior essentially you would choose the prior in early 

days, even to a certain extent today such that the product of this prior and the likelihood 

can be expressed in a closed form in some known form of p.d.f. Today you do not have 

the restriction; because of the computational power. Essentially what you now have is 

very high simulation power to over the last few years I would say probably less an a 

decade, we have now what are known as a Markov chain Monte Carlo simulators 

MCMC simulations, which allow us to work with p.d.fs that do not have a closed form 

expression, after all why do I need to know the posterior I would like to be able to 

compute this conditional expectation or the median or the mode, I should have the p.d.f 

either in a mathematical form or some values. 

So, what this Markov chain Monte Carlo simulators would do is, they would actually run 

for different realizations of y, they would actually figure out what is the resulting theta 

the possibilities for theta or for a given y you can say for different priors you can figure 

out what the posterior is. So, it is would sample the space and that sampling the 

outcomes space has to be done in a computationally efficient manner and that is the key 

in the Markov chain Monte Carlo simulators. So, in other words today this p.d.f this 

posterior is need not be available in a close form expression, it can be available 

numerical form. It essentially gives you the probabilities on small intervals in the theta 

space and using those numerical p.d.fs, you can compute the conditional expectation. So, 

you replace the integral with the numerical integration. 
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And go ahead and compute of course, there going to be more intensive then you are 

regular mle or even least squares, but that is today we have we can offered large 

computational power and you must have a observed in many mathematical feels today 

people are now slowly resorting to proving certain theorems by way of enlisting all 

enumerating all possibilities. So, it is like a brute force method which was considered 

bad earlier, now is being considered good bit it was the brute force method that is a 

doing an a exhaustive search for all possibilities if I am proving some theorem, was 

considered bad the pen and paper version was considered anlagen it is still anlagen, but it 

was considered bad because primarily because we did not have computational power to 

do an exhaustive search. 

So, there was a reason formats conjectures, I do not know if you must have heard that 

was actually not it does not possible to prove at least until such a time, analytically or 

mathematically whether that conjecture is correct or not; where as they did an exhaustive 

search. But using clever computational clever search methods and showed that the 

conjecture is wrong, but it required quite a bit of intelligence to do that exhaustive 

search, one small inefficiency in that intellectual in that search would really blow up the 

time takes or the time taken to figure out whether that conjecture is good or not, hope 

eventually approved that conjecture does not hold. 



So, here in Markov chain Monte Carlo simulations some intelligent kind of sampling is 

used and for those of your familiar with Kalman filters you would also heard of particle 

filters and so on. So, this particle filters also rely on this sampling in the outcomes space 

approach at clever sampling of the outcomes space. So, to come back to the discussion to 

compute this conditional like expectation, either you need f in analytical form closed 

form and still may be you will not be able to evaluate this integral, you would perform a 

numerical integration, but today you have the luxury of working out this integral again in 

numerical form even though you may not have f in a analytical form. 
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The second estimate has got to do with the mode although we written here median in the 

order, the second popular estimate the first one is called the bayesian estimate which is 

the conditional expectation. The second one is called the MAP. MAP stands for 

maximum aposterior estimate; what we are saying is we will if you know from the theory 

of from the probability theory.  
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Mode is nothing, but the maximum of the p.d.f. So, in this case it is a maximum of the 

posterior, we know that mode is essentially the value of the random variable at which the 

p.d.f peaks and that is why it is called the maximum aposterior estimate. And you can 

show that once again this map minimizes some kind of a cost function and that cost 

function is given here, that is the cost function is again in terms of the error, error 

between theta and theta naught. So, if you look at the cost function it is a kind of a 

discontinues kind of cost function, it basically sorry it is minimizing this cost function 

and it is called the hit or miss estimate; that means, either you are in the correct region or 

you are not with this kind of an estimate, but the beauty with this map is it is very close 

similarities to MLE. 

So, let me go back to this expression, the original expressions where a where you have 

posterior as the function of likelihood times a prior, if you look at this expression 

carefully and I write this in logarithmic form like we have done there. So, log of 

posterior is logarithm of likelihood plus logarithm of prior right. 

So, if you look at this carefully, the first point to observe is suppose I assume f of theta to 

be constant, where when is the p.d.f constant for what kind of distribution is the p.d.f 

constant uniform? Which means I am saying any value of theta is likely, I have no 

specific knowledge of which are the more likely values and less likely values I do not 

know average temperature anything between 0 Kelvin and may be 6000 Kelvin or 



whatever is the temperature of the sum that is possible for this average room 

temperature. It ridiculers, but you can in principle say that and still get away with that. 

So, let us say we say that I any value is likely equally likely then basically this boils 

down to a constant yeah there is a constant here. So, let me write that constant as well. 

So, this is observed into this constant. So, what you are left with this simply the posterior 

being the likelihood scaled likelihood and when you are evaluating the mode of this, all 

your doing is picking up the MLE. So, the MLE therefore, as much as to fisher dislike is 

the bayesian estimate with the uniform prior that is all, it is a bayesian estimator with 

uniform prior. If I assume any values equally likely and perform a bayesian estimate 

bayesian I carry out this and pick the map. So, that is very important. So, the complete 

statement is MLE is the map estimate with the uniformed prior, not simply bayesian 

estimation, bayesian estimation would be conditional expectation, it is a maximum 

aposterior estimate with the uniform prior. 

Now, we know we have a different perspective of MLE, we have been thinking all along, 

we have been viewing MLE all along as an estimate that maximizes are likelihood, but 

now we can take a different stamps and we can say well know it is actually an estimate 

that is the maximum of the posterior, after I have conducted the experiment among all 

possibilities I have picked up the maximum, that maximize the f of theta given y, if I 

begin with the uniform prior. This is the perspective that fisher obviously, vehemently 

argued against because the frame work in which MLE set up is theta is deterministic, the 

truth theta naught is deterministic where as in the bayesian frame work the truth is 

random. So, is the philosophy is themselves are different, how can you by shear 

mathematically equivalence observed my approach into the Bayesian. 

So, as I said fine people said that fine how long will you stay to argue with all due 

respect to fisher is it fine, no problem a few papers from you that is it right we will wait 

for some time and then start teaching that MLE is a special case of bayesian. 

So, I hope wherever Fisher is looking at from the sky’s is not upset with me and I keeps 

saying this, but anyway you should still nevertheless keep the that settled, but very 

important difference in mind while mathematically accepting the equivalence, alright. 


