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Good evening in the last week of classes, today we will close down on the estimation in 

the sense of a discussion on estimation methods and then very quickly, we will discuss 

how to apply these methods to estimating signal properties and time series models. Now 

before I begin, I know we kind of rush through the non-linear least squares, but as I said 

there is not much to analyze there so easily so it was more of learning, what is the 

difference between linear least squares and non-linear least squares and they said the 

difference is that you move from the notion of regressors to gradients of the predictors, 

otherwise the remaining results more or less follow having said that I have really 

condensed a lot of extensive work on the non-linear least squares literature and normally 

you will see in some preliminary text or preliminary material on non-linear regression on 

this idea of transforming variables explanatory variables. 

If you know the type of non-linearity up front so going back to the ideal gas law suppose 

I want to predict the temperature using pressure and volume, if I know through the 

physics or the chemistry of the process that at least for an ideal gas temperatures, 

temperature varies proportional to the product of pressure and volume then I can 

construct a regressor up front or sometimes if I am estimating let us say a some 

Arrhenius constant from the rate of reaction then I, if in other words if there is an 

exponential relation between the predictor and the explanatory variable I take the 

logarithm and so on. 

These are the class of transformation methods where you transform a non-linear 

regression problem to a linear regression problem, in doing so, it is alright when you are 

doing it at high school and so on because basically the idea had to be given to you that 

you could transform a non-linear regression problem to a linear regression problem, but 

it is now time to know that in doing. So, you could be transforming the errors in the data 

as well suppose y is the measured variable and x or u is the in independent variable and y 

and u share an exponential relation then I could take the logarithm of y and then rewrite a 



everything in terms as a linear relation between the transformed y and the explanative 

variable. 

But remember since we said y is a measured variable the errors in y also a transformed. 

So, question is now whether you assume Guassianity of the errors in a measurement or 

Guassianity of the errors in transform measurement and that can make a big difference to 

the quality of the estimates. So, whether they are efficient and so on. So, those are simple 

approaches normally you do not apply such methods in a setting like this, where you are 

learning some advance stuff as far as non-linear least square system is concerned as far 

as time series analysis is concerned you are learning the very basic stuff fine. 

Let us now go ahead with the maximum likelihood and Bayesian estimation; we will go 

through a quick round up I have already explained to you. So, in the last few classes we 

have learnt extensively at least reasonable extensively sensibly on the principle of least 

squares method when they give you efficient consistent estimates and so on, they have 

gone through the idea. So, weighted least squares and non-linear least squares we have 

already looked at maximum likelihood estimation principle when we were learning 

Fisher’s information. 

So, the idea is not new as far as Fisher’s MLE is concerned. 
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But let us take a closer look at MLE today again using our classic example of estimating 

the mean and then quickly move on to Bayesian estimation. Again we will study 

Bayesian estimation in the context of estimating mean so that estimation of mean is the 

beautiful example that helps us to illustrate several methods. So, we know we I am going 

to skip the concept of likelihood and just to refresh likelihood function is nothing, but the 

pdf, but fundamentally or philosophically they are two different things.  
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The pdf is a function of y and the parameters are fixed. Where as a likelihood function is 

conditioned on a given data set it is fixed and the parameters are free to vary and 

maximum likelihood principle believes that the winner among the unknown p d fs, 

candidate p d fs is the 1 that produces the observations with the maximum probability 

that happens to be the pdf proportion to the pdf and that is why you have the likelihood 

function. So, instead of maximizing the likelihood we maximize log likelihood for 

mathematical tractability or rather numerical tractability and therefore, we come up with 

this kind of an objective function although we say maximize log likelihood typically all 

optimization problems are presented as minimizing something. 

We say minimize negative log likelihood now there are some packages in r which will do 

the MLE for you, but I do not know see why you need a package for MLE unless you 

say well here is the data and I mention the type of pdf for example, there is a routine call 

MLE I think it is in stats four package if I am right all it says is give me the log 



likelihood function if I am going to pass on the log likelihood function why do I need a 

MLE well there is a reason, but still after all once I construct the log likelihood function 

it is only an optimization problem there is a reason why there must be there is an 

exclusive routine for MLE even though you have to manually construct the log 

likelihood and I will tell you a bit later, but by enlarge you do not need an exclusive 

function as long as you have access to an optimizer a non-linear optimizer. 

If this package or routine, sorry somehow helps you overcome this step of construct in 

the p d f all you have to say is I have Gaussian I assume that the data as a Gaussian 

distribution and so on. 

Then it is, but you may not find such specialized packages, at least to the best of my 

knowledge, it is better for you to manually construct what I am going to show you, we 

will skip the procedure, we know that I am going to take. 
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You straight to the example, what I am going to show you now is how to set up the MLE 

for the estimation of mean, we have seen that already almost half 75 percent of it, we 

have seen when we were computing Fisher’s information, but now we will look at it 

from an estimation view point rather than the Fisher’s information view point and 

observe close similarities with least squares later on that is tomorrow or bit day after 

when I show you how these methods are apply to estimating time series models then you 



realize that a significant effort from the users side in MLE is in setting up the likelihood 

function. 

Once you have set up the likelihood function then it is the computer baba’s work, not our 

work, it has to find the optimum our role kind of ends there. So, the procedure for any 

MLE at least there are different ways, but this is the very unique standard procedure that 

you can adopted for solving any MLE problem or setting up likelihood function first 

given the observations you have to write a model that way which we have already said 

the model maps the parameter space to the known space. So, here I am given 

observations of a Gaussian white noise process and I am interested in estimating now the 

mean and variance.  
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The model that we write as I have written on the screen is c plus e k or you can say m u 

plus e k does not matter you can think of this as mu y does not matter, now the first step 

in likelihood method is in setting up the likelihood of this n observations and remember 

since we are going to work with n observations to collectively we have to set up a joint p 

d f that is where the story begins, here it is a lot easy, in this example when I show you 

how to set up MLE for AR, one you will feel the flame turned on a bit more right, now 

there is no flame per say it is it is fairly easy. So, the joint p d f of these n observations 

has to be written first by identifying the source of randomness in y. So, source of 

randomness in y is this e k one begins from that point you say this what you make a 



assumptions on the source of randomness in first you identify the source which is e k 

here and then you have to make assumptions on the pdf that is generating the source in 

this already given to us it is a Gaussian white. So, e k is a Gaussian white noise process. 

Therefore, I know. So, now, then the next step is asking how does the source uncertainty 

propagate to the measurements right the step one is to identify the nature of uncertainty 

in source that is generating the measurements and then determining how the source 

uncertainty propagates to the measurements. So, here the source uncertainty is Gaussian 

white and if you ask how does it propagate to white, it is fairly straight forward it just 

propagates and results in a Gaussian white right if e k Gaussian y k is also Gaussian only 

mean shifted. So, that is that makes it easy, but that is a single as far as the single 

observation is concerned. 

Now, I have to considered n observations jointly when I am looking at n observations 

jointly I have to worry about the correlation or the dependence between the observing. In 

fact, specifically the dependence because that is what determines the joint pdf this case 

we are lucky because it is Gaussian white noise we know that uncorrelated since e k is 

uncorrelated y k is also going to be uncorrelated on the other hand if you had an AR1 

just to give you glance, suppose y was being generated by an AR1 process against step 

one. So, the goal here would be estimate the model parameter d one if necessary the 

mean of y otherwise you say well y 0 mean, but definitely d one and sigma square e. 

In this case again you start with the same question, what is the source of randomness in 

white e k? What is the nature of such randomness Gaussian white? Let us see you have 

given that now you have to ask if e k is a Gaussian white, what is going to be the nature 

of y k in terms of distribution that we know because it is a linear process we know that a 

Gaussian nature is going to be transmitted to y k as well, but the difference between y 

and e is that e k’s are uncorrelated where as y k’s are not. So, that brings a dependence 

and writing the join p d fs is not going to be straight forward it is going to be not 

difficult, but it definitely it is not going to be straight forward. 

We will learn a bit later as to how to handle correlated series here there is no correlation 

among y. So, it is fairly straight forward we have done this before we say that this is a 

product since you have to be careful here since you are looking at Gaussian uncorrelated 

series you might as well call the series as independent if it was some other distribution 



and still being uncorrelated you cannot claim independence remember only for Gaussian 

processes uncorrelatedness means independence. 

You have to keep that in mind that is it. So, you say this a product that is exactly what it 

is. 
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And the p d f of a single observation is written on the screen for it is a standard general 

generate Gaussian distribution with the mean c and variance sigma square, how did I 

write this? In doing this we had to do first determined the p d f of y since i given e k is 

Gaussian y k is Gaussian step one then remember that i in order to write the pdf of single 

observation I need to know the mean of y and variance of y. So, mean of y is cleared it is 

see I have to be now alert when it comes to calculation of variance of y whether it is a 

same as e or something else what do you think the variance of y what is it this is same as 

sigma square e again it is a simple one here. 

So, no brainer, but here one has to be careful, assume that this is the stationary process, 

assume a e k is 0 mean, we have shown that y k is 0 mean, but the variance of y is not the 

same as variance of e, what is the variance of y in the AR1 case? 

Student: (Refer Time: 14:27) 

By 1 minus d 1 square, so, you have to be careful when you write the pdf of a single 

observation here it straight forward. So, here we know that mu y is c and sigma square y 



is sigma square e. So, using the fact that y k is Gaussian it as a mean c and variance 

sigma square e we write the Gaussian pdf here that is it and then we put together the p d 

fs as a product. 
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And that is what that is expression that you get in equation 7 and the goal and now this is 

my likelihood function where I am given y k’s and I do not know c and sigma square. 

The optimization problem is that of maximizing the log likelihood or minimizing. In fact, 

there should be a minus l here in equation it I will correct that at the front minus big l.  

The optimization problem is that of minimizing the negative log likelihood. So, here you 

see the negative log likelihood now if you look at this expression eight carefully 

particularly pay attention to the last term that is something that we have seen before right 

we have seen this before this expression that last term which as a summation we have 

seen that before in the context of least squares estimation if you recall when we setup the 

when we introduce estimation with this example and we said we would like to be 

minimize the sum square error which is nothing, but the least squares idea you encounter 

this term. 

Naturally therefore, least squares is embedded in MLE we did not start with a least 

squares idea at all look at this gauss preceded fisher at least by hundred plus years it 

order of least squares, but when it comes to Fisher term by when gauss at actually 



already atomized you see MLE which embeds least squares on the other hand if you look 

at Bayesian, Bayesian precedes MLE at least the idea of Bayesian Bayes rules and so on. 

But we will see shortly that Bayesian ideas include MLE as a natural thing. So, in the 

order of hierarchy you see least squares and then MLE as a super set and then Bayesian 

as even a super super set. So, always remember this that you will naturally the working 

out on least squares methods the moment you work with MLE, but with the Gaussian 

distributed errors you wouldn’t run into this expression if I were to tell you that e k is i i 

d with the poisson pass on the distribution or with the uniform distribution or some other 

distribution I tell you that e k’s are independent, but I it is a non Gaussian distribution let 

us say. 

Then you would not run into this kind of expression which means that least squares is a 

special case of a MLE with Gaussian distribution that is very well known and just telling 

you giving you this information and probably that is coming to you as a first time in your 

life now apart from this summation here there is another term that as to be optimized in 

total there are three terms, but the first term is a constant. So, we can ignore that it is 

independent of theta. 

The second term is only dependent on sigma square e and the third term is dependent on 

both c and sigma square e; however, you can pull out you may say it is not exactly 

identical to least squares because in least squares I had you I had only sigma y k minus c 

square, but you can pull out the sigma square e out of the summation and basically see 

that you are giving or you can include that and you can say that you are including a 

waiting of sigma square e which is the same for all observations. 

Gradually you should sense you should now smell that even weighted least squares is 

perhaps a part of MLE, it is not just on ordinary least square even weighted least squares 

can be shown to be a part of MLE we will come to that very quickly. So, the point here is 

least squares is a special case of a MLE with Gaussian distributed errors and that MLE 

looks at solving a different kind of optimization problem with least squares embedded 

into it now; obviously, in this case this is so special that you can come up with an 

analytical solution straight away. 



What is the estimate of sigma square e in this case see we have already solved it is a 

sample mean you can see straight away minimization of this with respect to c we will get 

to the sample mean.  
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A sample mean is also the maximum likelihood estimator sigma square e estimate 

optimal estimate turns out to be what I show you here in equation ten it is a it is our un it 

is of biased estimator of variance it is not your least squares if it were to be a least 

squares estimator of variance you to you would see a one over n minus 1. 

What do we do in least square method? We first estimate the unknowns parameters, 

unknown here is c and that terms out to be sample mean and then you estimate sigma 

square e as sum square error by n minus p the sum square error is sigma y k minus y bar 

square divided by n minus p in least squares where p is the number of parameters you 

would have estimated which is one that is why the we have a one over n minus one in 

MLE you have one over n right. So, in MLE; in general MLE will lead to bias estimates 

sample mean is a un biased, but that is just a coincidence in general you can expect 

maximum likelihood to give to you bias estimates, but we know that asymptotically un 

biased. So, as n grows large the bias vanishes. 

So, which is very good that is why maximum likelihood estimators are good in the sense 

and for as n becomes large it will give you asymptotically un bias estimators, but there is 

a more important property why maximum likelihood estimators are preferred because it 



gives you the most efficient estimators that is point number one point number two is it 

naturally accommodates heteroskedastic errors as well what I mean by that is if I were to 

tell you go back to this problem and tell you that e k is white in the sense it is 

uncorrelated, but it is heteroskedastic; that means, it is variance changes with time where 

do you see the change coming in equation six you would have sigma square k right the 

variance of the kth observation and all this equations would be affected instead of the 

some weightage to all observation you would have observation dependent weighting that 

is nothing your optimal weighted least squares method. 

Weighted least squares with the optimal waiting already incorporated when we 

formulated weighted least squares we had to take two steps first we had to modify the ols 

by introducing the weighting matrix and then ask the question what kind of weighting 

matrices would give me efficient estimates in MLE you do not have to ask such 

questions at all straight away it is taken care of the weighting is taken care of the optimal 

weighting is also incorporated as a result you should expect efficient estimates of course, 

you can solve this assuming sigma square e k is known if it is not known then you have 

to estimate them iteratively that is another issue, but what I am trying to tell you here is 

weighted least squares is a special case of MLE with heteroskedastic Gaussian errors 

uncorrelated Gaussian errors that is it. 

MLE incorporates least squares weighted least squares and if necessary even non-linear 

least squares depending on the predictor that you have naturally. 
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Some of the just as a quick numerical example I am showing you just have randomly 

simulated about two hundred observations of a Gaussian white noise process with mean 

one and variance two and I am reporting to you the maximum likelihood estimates is 

nothing, but your sample mean with this standard error and this is the estimate of the 

standard deviation standard deviation is sorry it should be standard deviation not 

variance here. 

The standard deviation turns out to be 1.82 pretty close to the true value with this error 

and the 95 percent confidence intervals are included here once you derive the estimator 

then you go through the standard questions whether it is consistent efficient what is the 

distribution and all of that we have already discussed what sample mean is bias un biased 

estimator and so on, we have also discussed about the sigma MLE as well now of course, 

in this case you could use least squares as well. 
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But in general MLE is preferred. So, some remarks on this example we have talked about 

a few things already I am going to actually go pass this. 
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There is 1 point remark that I want to draw your attention to which is that the maximum 

likelihood estimate of sigma e is the same as first estimating sigma square e and then 

taking a sigma square root remember when we talked of Fisher’s information we said the 

Fisher’s information of theta is different from Fisher’s information of g of that is if if 

there is a parameter theta and then you are looking at estimating g of theta then in 



general the estimation of g of theta is not necessarily optimal estimate of g of theta is not 

necessarily the same as first optimal estimating theta and then taking g right if theta star 

is an estimate of theta and I am looking at estimating g of theta optimally then g star of 

theta. 
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If you said this star is not necessarily equal to g of theta star in general, but with 

maximum likelihood it as a beautiful invariance property which says that you do not 

have to worry if you want to estimate g of theta simply obtain ml of theta if that 

simplifies life for you estimate theta first and then take the transformation that is what 

this expression is telling you, you do not have to re again solve the MLE with sigma e as 

the unknown you do not have to do that you can simply estimate sigma square e like we 

did and then take the square root this is called the invariance property of MLE I am 

giving you certain things without proofs if you are interested in proof certainly you 

should go and look up standard text book on MLE. 
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And finally, you can show that the asymptotic distributions of all maximum likelihood 

estimates are Gaussian distributions in this case the parameters of interest are c and 

sigma square e these are asymptotic distributions which means large sample cases only 

although I am giving you these distribution results for this example in general if you take 

any maximum likelihood estimate it is a asymptotic distribution is going to be Gaussian, 

let me ask you simple question, what is a finite sample distribution of sigma square hat? 

Student: (Refer Time: 26:58) 

What is it? If you have to if the observations fall from a Gaussian white noise process 

then you write sigma square hat sigma square e hat will follow chi square distribution, 

but that is finite sample distribution this is large sample distribution and we know that if 

we look at a chi square distribution. In fact, the answer is not complete if you would say 

sigma square hat is a chi square distribution with n minus one degree of freedom as n 

grows the chi square distribution tends to look like a Gaussian so that is one way at least 

verifying this statement that I have made in equation 14. 

Because these are asymptotic distributions these are large sample distributions therefore, 

you should not be surprised that root ten sigma square e hat follows a Gaussian 

distribution where as we are bombarded all the time with the chi square distribution so 

much about MLE I have already talked about the weighted least square part very quickly. 
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I just want to talk about computing MLE, I would not go in to any details, I just want to 

tell you that in general any MLE will lead to a non-linear optimization problem, there is 

no doubt about it. 

However there are certain specialized algorithms. So, you can use your standard Newton 

Raphson method Gauss Newton method and so on to solve the non-linear optimization 

problem, but it turns out that there are some specialized algorithms that are written for 

MLE because of the nature of the likelihood function and the kind of problems that you 



expect to see some of these at least three of these are called the one is the Fisher’s 

scoring method developed by fisher it is a variant of Newton Raphson method the other 

is called the polytope method which uses a gradient such kind of approach this is also 

incidentally called as simplex algorithm. 

But this is not the same simplex that you encounter in l p in linear program. 
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And the third is called e m or the expectation maximization algorithm which is very 

popular that is used in solving MLE again I would not go in to the details, but these are 

perhaps the reason reasons why there are routines specialized for MLE which are asking 

you to give the law to supply the likelihood function and they use one of these 

algorithms to get the optimum value for you. 

I have given you the references you can look at the details if you are interest in this 

algorithms, but just to let you know and I am going to skip the asymptotic properties one 

point that I want to make in passing is a asymptotic efficiency we have talked about 

asymptotic normality asymptotic efficiency which is got to do with the variance of the 

estimator you can show that the maximum likelihood estimator results in the Cramer’s 

laws lower bound as n goes to infinity and that is one of the reasons apart from 

consistency the asymptotic efficiency is the one that makes ml methods very attractive 

maximum likelihood methods very attractive for large samples. 



For small samples it as poor performance and there is no assurance, but for large samples 

ml is good on and the one point that you want to keep in mind with maximum likelihood 

estimators is that it is applicable only if your pdf satisfies so called regularity conditions 

we have talked about that when we discussed Fisher’s information one of the conditions 

that for the p d f to be called as regular is the range of the parameters value should not 

determined the range of possibility. So, range of outcomes and the classic example is the 

uniform distribution. 

You should make sure that your p d f is regular by enlarge you will seen in the literature 

ml problems being set up for Gaussian or a few non Gaussian if nothing is known always 

maximum likelihood problems are solved for Gaussian because it easy to solve that is all 

it does not mean that it is a truth and we have talked about invariance and that kind of 

brings us close to the MLE. So, ML estimators large sample properties are very attractive 

it is consistent efficient it gives you Gaussian distribution it has invariants property very 

good, but remember that ml methods are not so great for finite samples, remember that. 


