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If your z were colored for example, what would be your w structurally look like? Would
it be diagonal? So, it will be a full matrix then you have to estimate more Ws, now one of
the ways out is when you know that z is colored, assume a time series model for z. So,
suppose z as a moving average kind of a structure then what we call is a parameterization
of w. So, instead of saying | am going to estimate every element of w, | will say that |
know z as a moving average, how do | know that? | performed an OLS and | looked at
the ACF. So, it gave me some idea of how z is evolving. So, | assume a time series
model for z and from where | can write theoretically the variances of z | can essentially
write the theoretical w symbolically and suppose z has an m a one then there are only 2

unknowns to be estimated the ¢ one square and ¢ sigma square e.

W now will be tri diagonal matrix where | would be estimating only ¢ one and sigma
square e not the entire elements of the tri diagonal matrix this is a standard idea and a
standard trick when the number of a typically in any non parametric analysis you can
take it from me in any non parametric analysis the number of unknowns that you will

estimate are very high.

In a parametric analysis because you have poured in some information you say that |
know the structure of something and you are saying that | will explain all these
unknowns with the help of some function with 2 parameters or three parameters or. So,
on the parameterized problems are always simpler to solve, but then somebody or
somewhere you have to procure that information and that information has to be right
whereas, the non parametric the advantage is you will see that when we talk of

estimation of from spectral densities the same story comes about.
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But then the moment you parameterize z then what you are doing is for example, if you
are fitting, if z consists this, psi consists of let say past data like in AR models and z has
been parameterized, let us say to an m a form and so on, essentially what you are doing
is you are fitting an arma model. So, you might as well turn to the estimation of arma
models and when you do that you enter the world of non-linear least squares which is

what | am going to quickly discuss today.

This concludes the discussion on weighted least squares | slowly motivated you to look
at no linear least squares, but there are many many situations where non-linear least
squares comes into play essentially the difference between linear least squares which is
what we have been discussing until now and non-linear least squares is this candidate

here.
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What happens now is that y hat is some non liner function of theta the issue is not non-
linear functions of regressors that is not the issue at all the issue is now that this is some
non-linear function you can say s or whatever, but g whatever function you want to call

it, it is a non-linear function.

So, what is the problem if this is non-linear, why is it? So, special why cannot | use the
methods that | have used in linear least squares, what is the difficulty? this is not an
estimator, this is only a predictor, 1 am saying if the predictor is a non-linear function
that is an issue we cannot use the exe the solutions that we have used until now and why
how did you solve the linear least squares problem how did we solve this problem let say

there is no lambda how did we solve this?
Student: (Refer Time: 04:16)

We have used projection theorem, fine suppose | did not use the projection theorem,
what is the natural approach? Take the derivative when you take the derivative of this
function here objective function what do you get and you take p derivatives for p

parameters p partial derivatives what kind of equations you end up with?

Student: linear equation.



Linear equations p linear equations p unknowns life is happy ever after correct, but
unfortunately life is not happy ever after with the non-linear one why because now

instead of the psi transpose k theta here now.
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I have a non-linear function sitting, 1 mean the k’s are there, but now you should see
what is happening when you take the derivative of this objective function with respect to
theta do you end up with this happy merry go around linear equations you do not right
you will end up with a bunch of non-linear equations and we know already the pains

associated with solving a bunch of non-linear equations.

And that is the first problem with this non-linear least square says that |1 do not end up
with a bunch of linear equations which means | cannot first of all write an analytical
solution that is the big problem when it comes to computation there is no unique solution
I have to use non-linear optimizers and that is optimizers meant for solving non-linear

least squares problems | may get local minima and so on.

the side effects of not having analytical solution come up and that is the main drawback
of working with non-linear least squares, but you have no choice if you know it is a a
non-linear predictor it. So, be it you cannot do anything about it if possible you would
work like to work with a linear one, but if the situation demands. So, for example, if you
have to fit an arma model what happens to the predictor if | am working with an arma



one, then I know the predictor v hat of k is going to be minus d one v k minus one plus ¢

one e k minus one right this is going to be my predictor.

Now, when | look at it is it linear in the unknowns is the question what do you think
remember this is known to me in time series this is the parameter these are the
parameters of interest this is not known to me. So, | do not have this. So, | do not know

what is this also?

But we know already when through our discussions on invertibility that e k minus one is
an it has to be can be re written in terms of the past v and when rewriting that the model
again comes into play that is your ¢ one and d one will come into play; that means, now
the right hand side is a complicated function of your theta because this e k minus one is
now if | were to rewrite this in terms of theta and knowns, knowns are always my data
and if were to rewrite this in terms of theta and data they rhyme well, but unfortunately
you end up with a non-linear function and this is a standard thing even if you did not
have the a r component with the moving average model you would end up with the ah

with a non-linear function that is even if this was absent.

in time series modeling you will routinely run into non-linear least squares there is no

escape therefore, now we will have to ask how to solve this there is nothing much.
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Solution to the NLS

The optimal solution o cace agaa obtained by setting Vel = 0
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» Asin OLS, an orthogonality condition governs the eptimum

» No closed-form and unique solution unlike in OLS

> dim(0) # dim(yp)

» Only a numerical solution and local optimum can be obtained



Your standard Newton, Raphson method, Gaussian, you have a bunch of non-linear
equations. So, question is how to solve this non-linear equations right. So, you can see
where do these equations come from | have taken the derivative of the objective function
with respect to theta set them to zero your dou y hat by dou theta you should place
attention on that it is the gradient of the predictor with respect to theta in the linear case
what is it the regressor, your psi which is independent of theta am | right. So, therefore, |

would get a bunch of linear equations the difficulty lies with this gradient here.

Now, as far as the solution to non-linear least squares is concerned one uses standard
methods like Newton Raphson method or a Gauss Newton method. In fact, a modified
Gauss Newton method or a Liebenberg Marquardt method, all of them, then are, they are
iterative algorithms only they essentially set up, they start with an initial guess refine the

parameters.
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Solution to NLS problem .« contd,

Several methods are available, all of which make use of an terative search
[/ ALY ALY (62)

where d™ 18 the direction of change in the parameter space, and 1), s the step length

that controls the amount of change

» Steepest descent, Lovonberg: Marquaedt, Quash Newton, Trust region

You have Newton Raphson method which search. So, the generic form of this update
equation in these methods is of this theta | plus one is theta I minus or plus does not
matter eta times some direction method. So, it needs a direction to search Newton
Raphson method offers one suggestion for the direction Gauss Newton method says no
no look at in this direction steepest descend will look we will ask you to look at in some

other direction and so on.



Essentially the formula is the same and eta is a parameter, user defined parameter that
has been tuned and people have studied, a lot of PhDs have gone into this in tuning these
parameters to the effect that you have a very good algorithms today, but very good does
not mean that they will get you unique solutions and so on, it is essentially the solutions
sometimes, some of the most sophisticated solutions make themselves robust to the
initial guesses, 1 of the drawbacks of this non-linear solvers is at sensitivity to initial
guesses and if you are able to generate a very good initial guess then you are guaranteed
that you will get a good solution, but if you have generated a poor initial guess then it
may be stuck there within the vicinity of it, sometimes you may even get absurd

solutions.

There is a big area that of lit research which focuses on generating initial guesses next
week when we talk of how to estimate time series models using non-linear least squares
even m | e gives rise to non-linear optimization problems we will talk about generating
good initial guesses particularly for estimating arma models there are some algo for
example, | can use a Yule Walker’s method, we have talked about this Yule Walker’s
method also gives rise to a bunch of non-linear equation, but they are a bit easier to
solve. So, | solve the Yule Walker problem and then feed that to my non-linear least
squares and we find the guess, but whatever you do the general ah formula that is used

for updating theta is this.

Therefore, you just you can just go through a quick review of the Newton Raphson and

Gauss Newton method.
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Shortcomings of N-R method

» Computation of & matrix inverse and the Hessian (s involved at each iteration

» Positive-defisteness of Hessan i not guaranteed, meanng, objective function is not
bownd to decrease after every itoration

The modifred N-R method overcomes these drawbacks by modifying an additiceal factor
i the step length

0 = 0" 1Y) g (64)

M T Mgt 1O LN ) “

These are some standard methods that you should have learnt in some numerical course,
the Newton Raphson method works with what is known as a hessian the direction is the

hessian the hessian is essentially the second derivative of what of the objective function
with respect to theta it is searching in this direction.
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Gauss-Newton method

The Gauss-Newton method employs an OLS on a first-order appraimation of the non.
linear pedictor at each iteration

§10) % §(61) + 4(6)],..p/(0 - 0) (65)

where W is made up of the gradients of the predictor
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Gauss Newton method solves a locally linear least squares problem that is why it is very
attractive, it says you have given me initial guess, | will approximate; I will construct a

linearized version of s around that theta that is the beauty that is the 1 way of looking at



Gauss Newton method, there are 2 perspectives to Gauss Newton method, one is that it is
going to replace the Hessian calculations in Newton Raphson method with something
else, but the other perspective that | prefer is that it is solving a locally linear least
squares problem at every guess of theta it is linearizing your predictor solving a least
squares problem generating improving your guess around the guess again it is also linear
least squares problem and continuous that is the basic idea that is why you see this
equation in 65 theta | is the ith guess at the ith iteration and what | am constructing is y
hat of theta using Taylor series expansion, | am constructing a first order 1 am only
taking the first order terms and constructing a linear one. So, now, this is linear you see,
but what is appearing here this big this is now not your phi do not get confused between

phi and psi.

At some point in time if you have not yet felt that the course is heavy it is my duty to
make sure that you feel that way and the literature is also such to bombard you with too
many symbols. So, here | have psi and then there is phi, phi is the matrix of regressors,
this big psi is a matrix of gradients they are one and the same in the least square in the
linear least squares in the non-linear least squares case they are not ok.

The more general set of regressors is this big phi that you also see sometimes in quantum
mechanics and since it is not as deadly as that, but essentially the point is when you
move from linear least squares to non-linear least squares you are moving from the
matrix of regressors to the matrix of gradients, but this gradient is not of the objective
function this gradient is of the predictor with respect to theta if you are working with a
linear least squares problem the predict this gradient of predictor with respect to theta is

the same as the regressor.

Why am | even focusing on this course on emphasizing this part so much because
ultimately when you look at the properties of the non-linear least squares estimator such
as consistency efficiency and distributional properties you will see that they bear a

striking resemblance with those in the linear least squares case.

In fact, it is not easy to come arrive at those properties people have broken their heads on
arriving at the distributional properties they are only available for large sample cases. So,
you should read some classic books by Ameya and so on, they are very widely cited or

the more recent ones | have given a few references the point is whatever results that we



have seen for example, if I look at variance of theta hat in OLs, we had sigma square e

times phi transpose phi inverse

In the non-linear least square case also you will see a similar result if | were to say what
is the variance of the theta hat of the estimate that you have obtained it is once again
sigma square e times not phi transpose phi, but the psi, but the big psi transpose psi
inverse that psi is the gradient of the predictor evaluated at the final estimate that you
have obtained that is all assuming that the final estimate is the divine one is the final
solution that you wanted it is not we know very well it is a local optimum, but there is no
other choice to be practical. So, that is why | am just going to skip this Gauss Newton
method | have explained the concept | just want to | have spoken about the gradient I just

want to conclude the lecture with the asymptotic properties.
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Asymptotic properties of NLS .. contd,

Standard assumptions

(. Identifiabilty: The requirement s that 5(0), ) = 20y, ) ¢ 0, » 0,

|

(Wferentiable functional form, Necessary for the existence of gradients, and even for
2 solution 1o exist

i, Correlation between gradient and disturbance comverges to zero at the optimum

iv. Stochastic nature of Ek1: The disturbance is conditionally zero-mean

homaoscedastic, zero temporal correlation and has finite second-order moments

v. Explanatory variables ave exogencus Implies coer(yik] £[A]) = 0

There are certain conditions standard conditions, you know the most important thing is

that the correlation.
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Consistency

Under the conditions of
| Compact pavameter space. The space 6 to which @ belongs i closed and bownded
2 Convergence of the objective function:

IJn(0,9) 5 J0) VO (should be continuous and differentiable)

o K T At 1WA Momnte | K10
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Consistency of NLS estimators .+« contd.

3. Continurty of J(@) The objective function is continuous and differentiable on the
parameter space B

4. Unique minimum of JI@): The obj. fun. J(0) has a unigue minimum at @,

the LS estimator of the parameters 0 ¢ O of the non-linear regression model 15 weakly
consistent

Ores 4 04 (T4)

See Amemiya, 1985 and Greene, 2012 for proofs and further reading
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For example, if you look at consistency which is the most important thing it says that

forget about the first one, the essentially it talks about the parameters, they should be in a

closed sub space, but the more important thing is that the co regressors should be

uncorrelated with the residuals that also applies here and it says under these several

conditions which are mostly conditions demanding how the objective function should be

it should be continuous and that there should be a unique minimum all of this has to be

guaranteed.



If a unique minimum exists then theta hat star will go and sit at that unique minimum as
n goes to infinity provided the again whatever you have left out is not correlated with
what you have included and there is one more subtle aspect that you should understand
in non-linear least squares in linear least squares we have used the terms regressors and
explanatory variables and we have said more or less they are the same, but in non-linear
least squares they can be different their explanatory variables are let us say you know
pressure all or some volume and so on. So, suppose | take the ideal gas law | have
temperature and pressure and volume readings the relationship is non-linear right, but
when | look at the explanatory variables for temperature they are pressure and volume,
but when | look at it as a regressor when | ask what is a regressor the regressor is not

pressure and volume the product of pressure and volume.

That is the difference that you should observe. So, what happens when you start off the
problem? You have pressure and volume, you have 2 explanatory variables in a linear
world you will have as many parameters to estimate as the number of explanatory
variables, but in the non-linear world you need not have in a non-linear world depending
on the number of regressors in a ideal gas law case p v is your regressor and there is only

one coef parameter estimate which is a universal gas constant that is all.

The number of parameters and the number of explanatory variables need not match. So, |

will 1 will just close the discussion with this.

(Refer Slide Time: 19:04)

Asymptotic normality

The NLS estimates asymptotically follow a Gaussian distribution regardiess of the actual
dstnbution of the noise term 4], provided the followng conditions are met

| \ W0, W(0,) Ye (positive definite covariance matrix)
| ¢ 2t e
i \‘l' o)™y <= N0 1: 8¢ ) (2ero correlation batween preudo regressors and
Vi
dsturbance)

With these assumptions:  Gys » \.,\'(0 \':.‘."\ )



With this result, here on the distribution property, you can see they are quite similar to
what we have seen in the OLs except that now we are saying that the regressor mate
instead of saying regressor matrix should have should be should have a non singular
covariance matrix here we are saying that the gradient of the predictor matrix should be
having a non singular covariance matrix and it should be uncorrelated between the
regressor the pseudo regressors and the disturbance under these 2 conditions you are
guaranteed that fortunately even in the non-linear least squares case the estimates follow
a Gaussian distribution this is what is used in calculating the errors for you when you are

estimating arma models we have already seen what is the case for AR models.

All you have to do is a non-linear least squares, if you do not understand anything,
simply keep go to the linear least squares and keep replacing phi with the pre gradient of
the predictor with respect to theta that you have obtained at the optimum that is all, the
rest of the solutions will properties everything have a striking resemblance, as long as
you stick to that hang on to that perspective, things are simple, do not try to get into
technical proofs, if you are interested of course, you can, but final result is this. So, with

this we come to a close on least squares.



