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Very good morning, so let us actually conclude on the weighted least squares problem 

today, briefly talk about non-linear least squares and then I will do a quick round up of 

MLE and if time permits will just get started on Bayesian. The idea in Bayesian as far as 

Bayesian estimation is concerned just to give you a preview; may not applied to 

estimating time series models is going to be a bit tough doing that in this course.  

But certainly we will learn in the last week of this course which is next week how to now 

take this estimation methods and apply them to estimating two things, signal properties 

mainly ACF and the power spectral densities and in that process we will also learn what 

are whiteness test and then we will learn how to apply this estimation methods to 

estimating time series models. Once that is done then we will close the course with the 

brief discussion on forecasting on prediction. After all we have come all along only to 

forecast and if a pretty if you do not know how to predict once I have estimated the 

model.  

We have visited those concepts in bits and pieces all along, it is just a matter of putting 

them together and formulizing certain concepts, but otherwise the basic result on 

prediction has already being given which is the conditional expectation is the best 

prediction, but then some more discussion on that is required. 

So, let us get going on by weighted least square, I have already introduced to you the 

concept of weighted least squares and given you a few compelling reasons as to why one 

would be interested in formulating and solving a weighted least squares problem. Mainly 

for whatever reason you would like to attach different importance to different 

observations, it could be motivated by heteroskedasticity or may be correlation in the 

errors or many a times, there is this need for updating the model. So, when you are 

updating your model online then the brute forcing is to take the entire data from the time 

you started modeling to the present and rebuild your model; that means, re-estimate your 

theta. Obviously, common sense tells us that we may have to give more importance to 



the most reason data and down play the data that is in the past and for this reason there is 

a concept called forgetting factor. We all have forgetting factors in build into us and it 

comes to learning remembering concepts, but when it comes to modeling unless you 

include that forgetting factor it will not forget the past. 

So, this forgetting factor can be thought of again as a weighting. So, there are several 

scenarios in which we may want to formulate and solve a weighted least squares problem 

and yesterday I said that the weighted least squares problem can be solved very easily by 

recasting it as an ordinary least squares problem. And that is exactly what you see on the 

slide because W is positive definite and I have already told you why the waiting matrix 

should be positive definite, that is to preserve the convexity of the objective function. 

(Refer Slide Time: 03:36) 

 

We can perform a Cholesky factorization and scale the both the observations and the 

regressors accordingly, so the weighting factor determines this scaling. 



(Refer Slide Time: 03:57) 

 

The nice thing is now in terms of the scale data, we have an OLS. So, the WLS is 

nothing, but an OLS on scaled data, but the scaling factor being governed by W. Since 

we already know the solution to the OLS, we can straight away write the solution to the 

weighted least squares; all one as do is instead of phi, use phi subscript s and instead of y 

use y subscript s and then plug them back in. So, if you see this expression here instead 

of phi s; we would substitute here c times phi. 

So as to be able to write the solution in terms of the original data, not the scaled data, so 

that is it. So, you have here phi transpose W phi inverse times phi transpose W y which 

is not a difficult solution to remember and straight away you should verify that when W 

is a identity, you recover the OLS solution and what we will do is; we will try to now ask 

what governs the choice of W and before we do that let me also tell you that as we have 

arrived the solution by scaling the data, we have also implicitly scaled the errors. 
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So, what we are saying is here is the original model linear regression model. So, let us 

assume I am got everything right what we are doing by scaling y and psi we are also 

actually scaling the errors and that is the trick and this is the standard trick that you will 

see prevailing in parameter estimation, whenever the errors do not meet the criterion of 

ordinary least squares then one way out is to scale the errors, but of course the big issue 

is knowing the weights are prior. 

So, here we are saying that these errors do not satisfy the conditions that are right for 

ordinary least squares, what are the conditions that are right for ordinary least squares 

they should be white. Whatever you have left out in your regression model should be 

white right that is when only your prediction we have been all along using the predictor 

as this. So this makes sense only from this prospective as well using this predictor makes 

sense only when what you are left out is white. 

If what you are left out is not white; obviously, you should factor that into your 

prediction, remember all them writing here y hat of k implicitly you should understand 

that this y hat of k is given psi k and theta. Normally we do not write this, but it is to be 

understood that I am given the regressors, I am given the theta and hence the prediction.  

In time series models your regressors are past data and therefore, your y hat becomes 

typically once step ahead prediction alright. Now if this was not white then the one step 

ahead prediction is not going to be 0 and again from that perspective you want to make 



sure that what you are left out is white. So, coming back to the point, if you know for 

some reason that what you have left out is white and you do not want to really model this 

part and you are only bent on estimating this theta.  

So, as an example suppose these are white, these are coloured but they are not 

necessarily white in the definition sense remember white noise process is a stationary 

uncorrelated process. The moment z has heteroskedasticity, the stationarity properties 

gone, it is still uncorrelated that is temporally, but it does not have the stationarity 

property. In such cases what you are saying is I know that this z k can be written, so 

when I have heteroskedasticity maybe we could write this as alpha k; e k where e k is 

now a stationary, your classical white noise process and alpha k is a scaling factor that 

keeps changing with the observation or with the index and what we are doing by scaling 

is essentially; remember what as you will see shortly for the heteroskedastic case the 

weighting matrix turns out to be the inverse of this noise covariance matrix. And you 

will see essentially that your W’s would be inverses of alpha; that means, your W would 

be a diagonal matrix of 1 over alpha. If you did not know the weighted least squares 

problem let us say you did not know the formulation, all you knew that OLS works best 

for the pure white noise case then if you are given that z has this kind of a structure. 

(Refer Slide Time: 09:35) 

 

Then what you do is, if you are given alpha you would rewrite this in this way 1 over 

alpha k; y k times 1 over alpha k theta plus e k. So, you would rewrite the same equation 



given alpha k in this fashion. Now you defined a new y and a new regressor that new phi 

and new y and new regressor is nothing but your scaled data, but what this point also 

says is that in that process you are rescaled your errors such that now in the scale 

domain, the errors meet the requirements for the OLS to work for you. OLS will work, 

but it works best; that means, it will give you the most efficient estimates when the 

residuals are white or your noise is white. So, that is the basic ideas you should keep in 

mind, as you as scaling the data; we are also scaling the errors in a particular fashion. 

So, the question is now how to choose the weights mat weighting matrix W who gives 

me this do I know alpha k for example, this in the heteroskedastic case there are as I have 

already said many other situations in which we run into W formulation. In all such 

formulations, how do I choose W? 

(Refer Slide Time: 11:09) 

 

Now there are many considerations that can going to it, but primarily there are two; one 

is model updation where W is a diagonal matrix of forgetting factors. 
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What we mean by forgetting factors is you would have your objective function as 

follows instead of simple y k minus psi transpose k theta square you would have a 

lambda power n minus k; that is k runs from 1 to n or 0 you can also modified this 

accordingly. 

So, the idea is here lambda is a forgetting factor it is a positive value between 0 and 1. 

So, that the most recent data that is when k equals n; lambda is lambda power n minus k 

is 1. So, the most recent data is given the maximum importance and the last one; that is 

the first observation in k equals 1, if you are standing at n then the past one which is 

really remotely in the past is k is equals 1; that is given the least importance because 

lambda is a factor between 0 and 1. 

So this is a concept of forgetting factor; you can straight away now recognize what is W. 

What would be the W here, it would be a diagonal matrix and what would be the entries 

here; lambda the first one would have n minus 1 up to lambda power 0. So, when you are 

looking at model updation using the concept of forgetting factors W becomes a diagonal 

matrix of forgetting factors and lambda is a users choice, there is nothing much there you 

would decided how much importance has to be given, but a far more important and 

prominent consideration is to obtain efficient estimates because that is how we started 

off. Remember we said that ordinary least squares does not work when z is not white 



when the equation error is not white and then we set on to the weighted least square 

formulation. 

So obviously, that consideration has to be now taken into account and the question to be 

asked is what is W, what is a weighting matrix now that will guarantee efficient 

estimates. When you are looking at a heteroskedastic case, it is very obvious what is W; 

if I knew the variances of z, if I knew the variance or if I knew alpha k; all I have to do is 

what would be W diagonal matrix of 1 by alpha very good right; stating that if alpha is 

high then that observation should be given lower importance.  

Obviously, if one observation if alpha is high for a particular k then that observation has 

a lager error. Suppose alpha k is a highest for that particular observation then that 

observation has a largest error among all the observations and obviously, you want to 

down play that observation; W will be inversely proposition to alpha. 

(Refer Slide Time: 14:45) 

 

So, you get some idea now that for obtaining efficient estimates we need to have W as 

the inverse of the noise covariance matrix; that is if I were to look at the noise covariance 

matrix of z in this case, it would be simply at the diagonal matrix, but let us assume 

sigma square e is 1; then I would have alpha 1 square up to alpha n square and W is 

going to be simply the inverse of this. 



Remember I am scaling the data with 1 over alpha and when I move on to the objective 

function, when I rewrite the objective function now in terms of this scaled observations 

and regressors, it amounts to writing a objective function for the original data using a 

weighting of 1 over alphas square because there is a square. So this leads us actually to 

the answer, but theoretically the way you would arrive at this solution that is to the 

question what should be the waiting matrix W if I want the most efficient estimate and 

efficiency has got to do with the variance. So, you can show that in a similar way that we 

have shown earlier for the OLS, the sigma theta hat is nothing but that is for the 

weighted least squares is the simple looking expression here. 

So, as you can see here it is a very simple expression, I do not expected to you 

remembers this at all even, I have tried to remembering it many times, but failed tot 

many W’s and phis and so on, but what you should quickly check is; if W is identity and 

z is white, it simplifies to the OLS expression that we have seen sigma square e times phi 

transpose phi inverse. Now what people have done is taken this simple expression in 

days where there was a lot of time and asked what gets me the minimum value of this; 

this is a matrix. So, does not make sense to talk of minimum of sigma theta hat people 

are looked at minimize in the trace what is trace some of diagonal elements. 

(Refer Slide Time: 16:59) 

 

So, they have looked at that and essentially come up with this answer the optimal W is 

nothing, but sigma z inverse which is what intuitively we expected. Our arguments 



where based on the heteroskedastic example, but this is a there is a formal proof 

available just look up the literature it is not of interest was at this moment, we argue 

without any rebate that this is a correct solution we agree. 

So, intuitively we know that the solution makes sense of course, the big question is who 

gives me sigma z, it is a very very rare commodity you cannot find it online no where 

you can have to get it from data and that is the typical approach that is used in all 

weighted least squares or any weighted approach, where you are weighting meeting 

matrix depends on a noise covariance matrix, but look at how important understanding 

this entire theory is; this one equitation should help you appreciate a formal the need for 

a formals study of the subject.  

If you did not know any of this you would be performing ordinary linear regression on 

data which has probably heteroskedasticity or errors are not white and so on and assume 

that your fit is best that the model is good, but the fact is you should have worked with 

scaled data. In fact, there is a whole lot of literature and we are continuing to work on it 

in a straightly different frame work, using these ideas we have some really break through 

solutions very recently in our group and now we are trying to communicate that to the 

world. 

So, this simple idea of weighting and incorporating that in the regression and that the fact 

that this weighting depends on the noise covariance matrix of the errors should really 

you know help us appreciate the beauty of this formulization. In fact, I told you the noise 

covariance matrix is perhaps or just the covariance matrix you been seeing it coming 

time and again in the course is perhaps the most ubiquitous quantity that you will keep 

encountering all through your life in data analysis either, there no escape to it even when 

you are non-linear world the covariance matrix will come and haunt you or right to help 

you with your data analysis in fact. 

So, let us look at an example to understand the beauty of this result by the way. So, when 

you choose this weighting matrix it turns out that the sigma theta hat in the weighted 

least squares case turns out to be this expression here; phi transpose are sigma e phi 

transpose sigma z phi transpose phi inverse. So, that is what easy answer and once again 

you should check when z is white; what happens sigma z will be a diagonal matrix of 

sigma square is on the diagonal and you recover the OLS solution and that is anywhere 



we know is the most efficient. So, it just a corroboration of what we already now, but it 

is a good practice to keep checking so that you know the expression that you working 

with are correct. 
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Let us look at an example we have already talked about this, so this is an example as I 

pertaining to what I discussed earlier; there is a reactor and temperature measurements 

are being made by ten sensors. Let me tell you also this is a syntactic data, but 

representative of a realistic scenario. So, I definitely I have cocked up the data, but this is 

not something very rare you will see this kind of situations quite often and what I have 

given you in this case is the sensor variances. So, here the k for us is not time the k for us 

is sensor.  

So, I have 10 sensors and I am suppose to estimate the average, if I did not know 

anything as a lay man I would take simple mean or sample mean of this 10 sensor 

readings and get the reactor temperature assumption is that the reaction temperature is 

constant during this experiments. But suppose I were to give the variances of each of this 

sensor, it is possible to obtain those in this kind of experiments. For example, say if I 

know the process at study state then I can observe the sensor noise in each sensor and 

estimate the variance and report them. 

So, imagine that that is how I done it and the variance have been given. So, now the goal 

is to estimate is steady state temperature as I said the simple solution is the least squares 



solution which is sample mean, but now that I am familiar with the weighted last squares 

concepts, I would rather construct the weighted average that is something that you 

should remember that when you are having heteroskedastic errors and you are estimating 

mean, what you would be working with for an estimator of mean is a weighted average 

and how does that come out to be because W, we know optimal W is 1 over sigma 

square along the diagonals and all you have to do is plug in to the solution here; phi 

transpose W phi inverse phi transpose W y. In every problem until you get use to it you 

should make it a habit to recognize what is the regrssor, what is the data. The data y is 

the data given to us the regressor, in this case because I am estimating an average 

remember the problem of interest to me is that y our familiar problems c plus z k instead 

of e k I have z k. 

So, this c is the unknown that I am estimating that is our theta, but there is no regressor; 

however, always this there are this two numbers in math 1 and 0 which are invisibly 

present in some form of other in every number. So, 1 is the invisible regressor are there 

and that is what makes up my phi there is only one regressor, so what would be phi 

transpose or let us a phi itself. 

Student: (Refer Time: 23:21). 

It will be a column matrix of once correct, as a result phi trans and W; we any anyway 

knows the diagonal matrix. So, the essentially it amounts to this expression here. 

(Refer Slide Time: 23:38) 

 



So, phi transfer W phi inverse would be your denominator because W is a diagonal 

matrix and phi transpose W y would be the numerator again because W is a diagonal 

matrix phi transpose would be a rho vector of once got it and that is all. So, the phi 

transpose here is the one that is responsible for the summation that you see and this y k 

by sigma square k comes about by this multiplication W times y; all I straight away 

recognizes I am constructing a weighted average. 

Now the value turns out to be 62 point something and the variance can also be computed, 

remember we said when we choose W to be the inverse of noise covariance matrix then 

the variance is simply phi transpose W phi inverse and once again compute that to be 

0.0805. Now why did the go through this weighted least square approach because we 

thought this gives me better results in the least square approach better in what sense? 

Student: Efficiency. 

Efficiency what does efficiency mean. 

Student: Variance should be lower than another one. 

Variance should be lower than another one. So, we should expect WLS to be more 

efficient then the least squares the question is if it is. 

(Refer Slide Time: 25:17) 

 



So let us look at this here; first of all look at the point estimate. Now this is where we 

need for computing the variance also is highlighted. So, you look at the point estimate is 

it significantly different from the point estimate that we computed with the weighted 

least squares; not much this gives a 61.95 something that gives me 62 point something. 

So, if you look at the difference in point estimates it is not much, but if you look at the 

variability in the estimate; what do you notice here you have 0.16 right and whereas, you 

have 0.08. So, the variance of the ordinary least squares is twice the variability that you 

seen weighted least squares.  

If you translate that in terms of standard errors it is 1.41 raffle right that can be quite a lot 

in many applications, but also let me tell you that in this example the factor turns out to 

be 1.41 that is the in terms of errors, in some examples it may be much higher than this 

in other examples it may be lower than this, but you are always guaranteed that weighted 

least squares will not perform was an OLS; at best it will be OLS. 

So, you do not lose much by working with WLS, but what you can lose out on is the 

computational time because it is an iterative typically W is not known, you have to 

iterate and therefore, you have to put in some effort. The question is whether the effect is 

worth it, you may not know that a priori sometimes you may know; sometimes you know 

clearly there is a need for the weighted least squares. So, you say it is worth the iteration 

sometimes it is ok there is a heteroskedasticity, but the fluctuation is very very low more 

or less I will treat it as a homo heteroskedastic case, I will scarifies bit of a efficiency in 

the in the estimates for computation efficiency. So, there is conflict between 

computational efficiency and estimate efficiency, so those are the standard things that 

you will come across in estimation. So, hopefully this example gives you a better picture 

of how weighted least squares works and the inner workings of it. 


