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The next of course is consistency remember we said bias variance efficiency consistency 

and finally confidence regions. Now we avoid the proves here and I give you the results 

straight away. 

(Refer Slide Time: 00:24) 

 

The consistency of OLS is achieved under two conditions: one is that the regressors, the 

covariance matrix of the regressors is invertible. 

Now, I am giving you the result on the theoretical covariance that is expectation of z k 

times z k transpose, what this means in practice is this phi transpose phi that you here 

that you see here it should be nonsingular. 



(Refer Slide Time: 00:56) 

 

Because remember and estimate of the theoretical covariance is as I said 1 over N phi 

transpose phi and just one more point that I want to mention when going back here, when 

you have n minus p here in the expression 34, all the n’s that we are using here refers to 

the number of observations that is all right, but in practice the numb that n there refers to 

the number of effective observations that I have gone into constructing your regressor 

matrix. What I mean by this is when we were constructing the regressor matrix for AR 

models; we noticed that we had to throw away p observations when I am estimating 

parameters of an ARP model. So, in effect I am working only with n minus p 

observations already, right?  

I have, I am throwing away n minus p observations, I am working with n minus p. On 

top of that you have p degrees of freedom lost. The regressor matrix itself is constructed 

from n minus from n minus p that is it has only n minus p rows not n rows, on top of it I 

lose p degrees of freedom. So, when you verify the results that I ask you to do, you have 

to be careful the n here is the effective number of observations that actually go into the 

construction of phi. 

In other words for AR models if you have generated thousand observations and if you 

are fitting let us say a 3rd order AR model, the n is 997 and p is 3. So, in the denominator 

you would have 994 whereas, for static models, what we mean by static models is the 

regressors are instantly related the predictors are instantly related to the regressors, those 



are called steady state models, those are the models that you learn in typical statistics 

courses; where there is no notion of dynamism, in such cases n is the number of 

observations that you have because you are you do not have to throw away any 

observations. So, please observe this distinction. So, let us get back here for consistency 

two things have to be guaranteed, the regressors cannot be linearly related the regressors 

themselves cannot be linearly related, why is this condition coming up? 

Student: (Refer Time: 03:33).  

So, because if regressors are linearly related. So, imagine columns of phi are linearly 

related, what happens to the rank of phi transpose phi? It becomes rank deficient and 

therefore, it becomes you know singular and then inevitability cannot be guaranteed. So, 

collinearity among phi should be avoided and that is a big branch of literature in 

parameter estimation, particularly concerning with regression models where people are 

trying to address collinearity in phi, you may not in practice run into perfectly linearly 

related regressors; that means, any pair of columns of phi may not be perfectly linearly 

related, but even if they are close then the condition number shoots up and then you have 

an issue.  

So, collinearity does not mean necessarily theoretically it means perfect linear relation, 

practically it means nearly linearly related. In such cases there are remedies which we do 

not discuss its outside the scope of this course, but there are remedies available, but what 

this result tells you is when you are using OLS make sure that your regressor matrix is 

far away from such situations. Secondly, the most important thing which we have 

already discussed which is that the regressors are uncorrelated with the residuals. 

Consistency looks at asymptotic bias whereas, the earlier bias that we discussed is 

statistical bias for a fixed (Refer Time: 05:11). So, what this result tells me is even 

asymptotically the bias will not vanish if the regressors are uncorrelated correlated with 

the residuals. The earlier case that we talked about the bias is the case when n is finite. 

So, we are just looking at across the realizations of the equation error whereas, 

consistency is looking at asymptotic bias, it says the mean square error should go to zero 

for example, if you are looking at mean square error consistency and mean square error 

should go to zero in the limit as n goes to infinity. 
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And if you recall the mean square error has two components to it. It has bias square plus 

variance and consistency one form of consistency that we talked about which is mean 

square consistency, this should go to 0 right. So, which means what the statement implies 

is that, if the regressors are correlated with the residuals with whatever you have left out 

in your model. Then this is the term that does not go to zero whereas, variance would go 

to zero remember that we said in practice we replace variance expression with sigma 

square E hat and where that would have an n factor which will take care of things, which 

will take care of the growing phi transpose phi.  

Remember as n grows the phi transpose phi also grows because the number of terms that 

you are summing up is growing. However, there is another n in your sigma square E hat 

in the denominator, which will take care of that that is one way of looking at. So, the 

issue is not with the variance per say the issue is with the bias, when the regressors are 

correlated with the residuals.  

So, to summarize when these two conditions are satisfied in the limit as n goes to 

infinity, consistent estimates are guaranteed. So, go back to the example when I upload 

the mark down file, download it play around, just make sure in your simulation one of 

this conditions is violated particularly the regressors being uncorrelated, do not try to 

play around with the first one because that will bring in collinearity and messes up things 



a lot more than you can handle. So, just simulate a situation whether regressors are 

correlated with the residuals and then you will see that consistency is also not guaranty. 

In other words if you are working with ordinary least squares method, just make sure that 

your residuals are white that is it. By whatever you do you have to make sure residuals 

are white; that means, either you have to (Refer Time: 08:07) your finally, what you have 

in your hands is the model. So, trick your model such that the residuals are white, but 

without running into the problem of over parameterization. So, in parameter estimation 

there are this walls that you will hit against you have to actually work well within the 

walls of the framework, that is what is important and the boundaries are different with 

different estimation methods. 

So, finally, we come to the distribution which will tell us which will allow us to 

construct confidence region. One of the things that you should notice in the expression 

for theta hat, so let me write the expression here for you again. 

(Refer Slide Time: 08:52) 

 

The OLS result; theta hat is phi transpose phi inverse phi transpose y. Assume for a 

moment that phi is deterministic, just assume that phi is frozen then straight away it tells 

you that theta hat is a linear estimator that the least squares. So, let me write thus write 

this for you emphasis that, that the least squares estimator is a linear estimate; why is it a 

linear estimator? Because it is just a phi is fixed then all your doing is its actually you 

can rewrite this as sum alpha k, Y k or you can say w k, Y k. So, all you are doing is you 



are just linearly fusing the observations that you have to produce the parameter. I will 

just go back to alpha because w is reserved for weights later on in w (Refer Time: 09:55) 

I do not want to confuse you; these alphas are calculated from your phi transpose phi 

inverse phi transpose. 

Now, in order to dist determine the distribution of theta hat, all I have to do is invoke c l 

T right? if y k as Gaussian errors no worries even for finite n theta hat will have a 

Gaussian distribution, joint Gaussian distribution remember your theta hat is a p by 1 

vector, you should remember that. So, although I write it this way you have to be careful 

let me probably even write this as simply some A times y. So, that A is a matrix that is 

phi transpose phi inverse times phi transpose that is nothing, but your pseudo inverse. So, 

you can see straight away that if y has a Gaussian error that means, if you would z is 

Gaussian distributed jointly, then theta hat is also jointly Gaussian distributed. On the 

other hand if the data has non Gaussian errors, then only asymptotically theta hat has a 

Gaussian distribution that is by virtue of the central limit theorem, but that is a fortune 

that we have with least squares, although there are some restrictions it says it is efficient 

only when things are white. It is consistent only when the regressors are uncorrelated 

with the residuals and all of that nevertheless it gives you some benefits somewhere; like 

in everything else in life I mean if you look at a car, car will have some feature and some 

features may be absent, but then it depends on what you want.  

So, likewise here if you take an estimator it has some features and not you know, but 

with some restrictions; if you are willing to relax this linear estimation expression, then 

you will get better properties which is what MLE does. Although MLE is not base on 

that philosophy, in general all maximum likelihood estimators are non-linear estimators 

in general may be bearing some special cases; whereas, all OLS solution estimators any 

for any problem OLS gives you a when the regressor is linear on the other hand with 

MLE even if the regressor is linear, you would you are not going to get a linear estimator 

that is the difference. 

That is the advantage of working with least squares methods and that is why it is very 

popular. Imagine now for above 250 years least squares is popular, we keep talking 

about some DDLJ running in some Maratha theatre for you know 30 years or 20 years 

and so on, but here least squares has been running in the theatres of parameter estimation 

for centuries; why? Because of its beauty in a many other things and its simplicity, so 



that is it so in general we assume now theta hat to be a following a Gaussian distribution, 

but keeping in mind that it is a result that holds in general for large n for non Gaussian 

errors. So, that is the statement here, remember we do not write the statement exactly this 

way we say rather root n times theta hat minus theta naught follows an asymptotically 

and follows a Gaussian distribution right. 

(Refer Slide Time: 13:16) 

 

Again you do assume that phi transpose phi is a full rank number 1 and there are no out 

layers in the data or no observations in the data that will hijack the analysis. Few 

observations after all we know there is no robustness incorporated into the estimator, a 

there is no robustness explicitly anywhere incorporated into the estimation for into the 

parameter estimation formulation, as a result a few extreme data points can completely 

hijack the estimate and that is what we mean by well behaved regressors. Well behaved 

regressors would mean that no single observation will dominate the regressor matrix and 

that phi transpose phi is of full rank particularly as n goes to infinity. 

 (Refer Slide Time: 14:11) 



 

So from this we I will I will skip that part from this we actually compute the confidence 

regions, these are approximate confidence regions because I m giving this confidence 

region for individual parameters, the distribution that is given here is the joint one, right? 

If we know from random variable theory that if I have vector of random variables have a 

joint Gaussian distribution, it does not necessarily it does mean of course, that individual 

ones are Gaussian distributed, but I still have to analyze them jointly.  

On the other hand if the individual ones are jointly are Gaussian distributed then the joint 

ones need not be Gaussian distributed, what we are doing here is we are saying is, given 

that theta hat has a joint Gaussian distribution, the individual ones that is a marginal ones 

are also Gaussian, but I am ignoring the other aspects that is the correlation between the 

individual parameter estimates. I am just taking them out and analyzing them 

individually and saying that theta I hat minus the true value divided by the root sigma 

square e s i i; what is s i i ? It is a diagonal element of phi transpose phi inverse. So, if 

you this expression here in 37 is a theoretical one. 

In practice what do we do? We replace the sigma c c with this estimate; that is what I do 

the 37 gives you the theoretical result, theoretical meaning in terms of the theoretical 

covariance matrix of regressors, in practice I replace the sigma psi, psi with its respective 

estimate and once I do that you can see that the n will vanish from the expression, so that 

you have again sigma theta hat being, sigma square e times phi transpose phi inverse. So 

all that this result is saying is, calculate your sigma theta hat, take the diagonal elements 

right and then write an individual confidence region. 



Since we are estimating sigma square e and we do not know sigma square e; the 

confidence region strictly speaking should be written in terms of T distribution, but 

asymptotically it is a Gaussian distribution; for finite small n we replace this Gaussian 

distribution in equation 49, 40 with the T distribution, but that is only valid when the 

errors are Gaussian. So, to avoid the confusion simply replace the T values there with 

Gaussian a corresponding Gaussian value distribution values when n is large; typically if 

in our cases n is large the small sample cases are different. 
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So, that that is how you construct the confidence regions and if you were to look at there 

is command in r if I am right? Which computes the confidence intervals, so you can 

supply I do not if it will take this ops sorry; yesterday we had fit and unfortunately this 

confint only works with l m. So, I if you remember we had computed for example, a 

linear static linear regression model for y where we did a polynomial fit, you can supply 

that here and it reports the confidence intervals 95 percent confidence interval, you can 

change that. This confint does not necessarily work with all kinds of objects, only the 

results coming from l m can be effect to confint, but there are other packages which will 

do a better job for you. So, it is giving you the confidence interval, which you could have 

calculated as well.  



(Refer Slide Time: 18:16) 

 

So, that concludes discussion on OLS and I am going to. 

(Refer Slide Time: 18:19) 

 

Skip the computation; computation of OLS I have already talked about it, I have said that 

either you use q r or SVD. 


