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Let me go through this simple example to make sure that you understand the notion of a 

mean or the expectation very well that you know how to compute theoretically 

expectation. Now we would like to compute the expectation of a random variable. 

Although I say random variable, I have time instant here, but you know why we have the 

time instant, we are looking at the kth instant of a random signal. So, at any instant we 

say that the random signal is a random variable and therefore, we have here y k equals 

sin omega k plus phi.  

As I explained yesterday you should first find out what is the source of randomness, I am 

saying that this is a random variable, in this case the source of randomness is a phase and 

the distribution or sorry the density function or the distribution of phi is also given. The 

randomness in phi propagates to y and that is what makes why random there is nothing 

random about the amplitude of the sinusoid, nor the frequency and there is nothing 

random about time here alright. So, as I show you in the solution there the expectation of 

y k you use a formula always follow a systematic procedure you will the chances of 



going wrong are very low. 
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What I do is here I use this earlier expression in equation 5, expectation of g of X, what 

is X in this example that we are looking at? 

Student: (Refer Time: 01:45). 

That is a phase phi, phi is the random variable, the function is a sinusoid and I simply 

plug in this formula as much as I hate to use the term I simply plug in that integral plug 

in the g of X and f of X into the integral in the equation 5, what is f of X? 

Student: (Refer Time: 02:06). 

1 by 2 pi because it is uniformly dispute that is the loveliest and cutest distribution that 

you can ever have really, but in certain situations no, you would prefer to have a 

Gaussian 1. 

Yes, go through the simple integral, I will not test your integrating abilities and therefore, 

I have done the solution for you, it turns out to be 0. Now this value of 0 that has come 

out of the solution you may think it was so obvious because the average of a sine wave is 

0 correct, but the average of the sine sinusoid being 0 is something that we are thinking 

along in time, here we are not integrating in time, if you notice we are integrating across 

the outcome space of phi. It is true that the average of sin in time is 0. So, to understand 



that when you go back, change this example slightly or problem slightly definition that 

this phi is no longer uniformly distributed in minus pi to pi, but rather 0 to pi, alright. So, 

phi has a uniform distribution in 0 to pi and then work out this solution find out what is 

the average of this y of k, intuitively what do you expect? If the distribution is no longer 

in minus pi to pi, but 0 to pi still uniformly distributed what would you get? Will the 

answer change? So, what would be the answer? 

Student: (Refer Time: 03:47). 

1 minus? 

Student: (Refer Time: 03:50). 

Let me ask you, do you expect a nonzero answer or not. 

Student: (Refer Time: 03:57). 

Yes. So, that is different from your time average of the sin wave. 

The example here is to try and tell you again reinforce that time averages are different 

from on some lay averages. So, be careful if you actually follow things systematically, 

you will not go wrong, first find out what is the source of randomness and start from 

there and compute your expectation. We will revisit this example when we discuss the 

notion of stationarity for now will go past and talk about the second moment. 
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So, what we understand is the first moment is ironically, it is also incidentally, it is also 

the first thing that you discuss and those are the is a most important moment I should say 

that is useful in many decision making exercises. 

But there is also an equally and sometimes people would argue that more perhaps more 

important is this variance which is the second central moment. So, when I am visiting a 

new city I am not only interested in knowing the average temperature, but I better know 

the range of temperatures that I expect to see because that is going to really help me in 

my decision making. And once again you see here what we define is they say the 

measure as the second central moment. 
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If you look at the definition carefully we have expectation of X minus mu X to the whole 

square if you look at the definition carefully, what it is actually giving you is the average 

square distance of the outcome from the center and therefore, it is a measure of the 

spread of outcomes how far your outcomes are spread about the center the farther they 

are spread the larger is a variance or variability as it is also known. And for the 

deterministic variable, what would be the variance 0 because there is only one outcome 

and that is about it. So, the entire expression works out to be 0, this is called a second 

central moment and once again we use the expression that we saw in 5 to arrive at the 

expression for the variance. 

And again you can give the same interpretations. So, but you now start to see that the 



expectation operator appears in almost every sphere of statistical data analysis. You can 

also rewrite this variance in a different way sometimes this expression is useful. 
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What you see in equation 8? This expectation of X square minus mu square expectation 

of X square is simply the second moment. So, the second central moment is a difference 

between the second moment and the square of the first moment and once again I would 

like to say that do not confuse this definition of variance with the sample variance 

definition that is used for signals which is computed across time, this variance is also 

computed across the outcome space and this is sometimes people call this as a population 

variance earlier one as apartment the first moment as a population mean. 

But remember it is very simple to remember this as theoretical definitions all we are 

learning right now is theory, we will later on learn how to estimate mean how to estimate 

variance and so on, this is the time has not yet come. Generally variance is also used as 

in fairly crude sense as a measure of randomness that is how much uncertainty is that as 

a measure of uncertainty or a quantification of uncertainty larger the variability you say 

well larger the variances randomness is because variance is a measure of the spread of 

outcomes and because if variance is large; that means, outcomes are spread far away 

from the center and therefore, more say in some literal sense the uncertainty.  

Very often we do perform some operations on random variables and therefore, it is 

important to know how when these operations are performed and variance for example, 



scale. 
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For example I may add some constant to a random variable, in that case the mean is 

shifted by that amount, but the variance remains unperturbed; obviously, because 

variance is always a measure with reference to the center and you can also have affine 

transformations such as if I am given a random variable X I may construct a new random 

variable y which is alpha X plus beta. In that case again the mean is shifted 

appropriately, but the variance is now alpha square sigma square X this is something that 

you will use from time to time in different theoretical exercises. 

What happens when X is nonlinearly transformed well it depends on the kind of non-

linear transformation that you induce? So much about the mean and variance any 

questions on mean and variance from the other hall, now before we move along it may 

be good to know certain properties of Gaussian distributed random variables, but I will 

and have postponed this discussion to a bit later on because it requires the understanding 

of what is known as a correlation and then uncorrelated normal variables and so on. We 

will come back to this slide when the time comes.  
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The last thing that I want to talk about in the review of the univariate random variables 

although occasionally we have talked about on the random variable y is this very familiar 

central limit theorem which basically tells us, there are various versions of central limit 

theorem, if you look at the original version of central limit theorem that came about in 

60s. It says essentially if you take a bunch of random variables and you simply add them 

up in some proportion or in fact, in the purest in the simplest case you are simply add 

adding them up no weighted summation and you construct a new random variable y 

which comes out of this summation. Then the distribution of this resulting random 

variable tends to be Gaussian as you add more and more random variables into this 

summation, and as you can see the distribution is mentioned in the form of a 

standardized, the result is stated in the form of in the standardized form now the beauty 

of this result is why which is the sum of the random variables has a Gaussian distribution 

regardless of the distribution of X. 

I am not stating this because I have to mention the central limit theorem, you will see the 

applications of central limit theorem later on for example, in deriving the distribution of 

what we call as sample mean. So, you can quickly draw some from your memory you 

can recall that the sample mean is also a sum of observations divided by of course, the 

number of observations the 1 over n does not appear here in the expression for y, but that 

is the only referring factor otherwise the sample mean and what you see as y look very 

much similar. When we enter the world of estimation theory we will have at some point 



in time talk about distributions of estimates at that point in time the central limit theorem 

comes handy in telling us how the sample mean is distributed at the moment will not get 

into that. 

In general when you are dealing with linear estimators the central limit theorem comes 

very handy in deriving the distributions of those estimates at the moment will not worry 

about it, but it is also useful in a general sense that you if you consider a random variable 

any random variable let us say you are looking at the stock market index although it is a 

not a correct example there are a number of factors that affect the stock market index. If 

you assume that those factors add up linearly then as the number of factors increase for 

that stock market index or any other random variable then you can expect that random 

variable to follow a Gaussian distribution.  

This is also one of the reasons why in the absence of any a priori knowledge nobody has 

told me what distribution it follows generally the Gaussian distribution is assumed 

because you assume that maybe that random variable is actually may be constructed as a 

sum of many many random variables which may not be the case, but given no 

knowledge it is your free to assume anything. So, I assume the one that simplifies your 

situation. So much about the CLT, we will revisit the CLT later on when we talk about 

distributions of estimates with this we closer review, do not close your notebooks, we 

will now get into the world of bivariate analysis everything is ok, yes. 

Student: (Refer Time: 13:35) the random variables that we are dealing with (Refer Time: 

13:40) we have the same mean and variables. 

Definitely, I mean I have given a very nice version of central limiting; there are results 

that that deal with deviations from this statement. So, in this we assume all this excess 

are coming from identical it is a good point that you brought up because I did not 

emphasize an important aspect of CLT which is the independence. The factors of the 

random variables that you are adding up should be independent, not only having 

identical distribution, but also independent - independence is something that we have not 

talked about we are going to talk about it shortly. But, to answer your question whether, 

what happens when these random variables have different means. 

Even in some weak, sense the resulting random variable will have a Gaussian 

distribution, but you can still calculate the average of y. 
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For example, if you say Y is expression that we had is let me put the subscript n you are 

adding up n random variables. Even when these Xs have different means you can simply 

say that expectation of Y N is nothing but sigma of expectation of X n, you can still 

calculate the mean, the concern should be whether still Y will follow Gaussian 

distribution as n goes to infinity. Yes, in some loose ends yes, but the number of 

observations that are required to make Y reach the distribution of Y reach a Gaussian 1 

maybe different from the case where the number of factors that you require to make why 

go to a Gaussian distribution when all of them have the same means. So, we call this as a 

convergence rate. 

How quickly does a distribution of Y converge to a Gaussian and there are lot of studies 

on that. What are the impacts of the deviations from the central limit theorem on the 

convergence of the distribution of Y or convergence of Y in distributional sense, how 

quickly does Y tend to be Gaussian? As a simple example, you can try this out when you 

go back in (Refer Time: 16:02), you can generate for example, you can draw X from a 

uniform distribution may be about 5 observations add them up. 

And repeat this because you will have to consider the distribution of Y, repeat this 

exercise, put it through a kind of a Monte Carlo simulation, you will find that maybe the 

moment you add about 5 random variables from uniform distribution, Y is also already 

showing Gaussian shapes, but you draw Y from X from some other distribution. Let us 



say chi-square or maybe in some beer distribution it may take more number of random 

variables to help y converge to Gaussian in distribution. 

Student: What will be a random 2 kinds of distributions? 

That also you can study so there are lot of results that are available, but there are then 

additional restrictions constraints and so on, we do not generally go into that that is 

usually. 

Student: Why is it always Gaussian distribution? 

Sorry. 

Student: Noise is a. 

We will come to that, right now we are not talking of random signals, we are only talking 

of random variables when we come to the signals, we will answer that part of your 

question. 
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Let me at least start off on multivariate analysis very briefly maybe about 2 3 minutes 

and then will continue tomorrow. So, we have learned how to characterize a univariate 

sorry a single random variable, but very often we are dealing with more than 1 random 

variable; obviously, even if you take the random signal ultimately what am I going to 

do? I am going to actually look at the correlation for example, or look at how v k 



depends on its past which means that I am going to collectively analyze or jointly 

analyze many random variables together, until now we have focused on a single random 

variable. So, we need to be well versed with the theory of multivariate analysis or 

random you know analysis of more than one random variable. But we will start with 

bivariate analysis because by and large that is sufficient even for the course the bivariate 

analysis is more than in a occasionally we may talk of more than 1 random variable 

particularly in estimation we will, but in those cases the random variables are not the 

observations, but the parameter estimates we will talk about that later anyway. 
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Let us assume that I have now 2 random variables and I have to analyze them jointly and 

there are numerous examples that one can give for example, height and weight of an 

individual or temperature and pressure of a gas or maybe student grades and maybe 

earthquakes and maybe Timbuktu or whatever. So, there are so many things I can 

correlate I can jointly analyze. 
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When we are jointly analyzing more than 2 or more random variables, the notion of joint 

density comes into picture because now the question is about probability that both these 

random variables take on values within a cell in the 2 dimensional space earlier we 

looked at the probability of the single random variable taking on values within some 

interval on the real line, but now we have to look at the 2 dimension space and to 

compute that probability we need the joint density which is given denoted by f of x 

comma y. So, instead of a single integral now you have double integrals a bit more scary, 

but it is ok. 

We know by now you should know that we do not work with densities as much as we 

work with moments. So, very quickly we will talk about moments. 



(Refer Slide Time: 19:44) 

 

But before we do that let me give you an example of a joint Gaussian density which we 

will frequently work with you have seen the expression for the density of a sorry for the 

Gaussian density for a single random variable case yesterday. This is the expression that 

you see for the joint Gaussian density and you can see striking similarities with the 

expression for the univariate case, except that instead of sigma X in the denominator in 

the multiplication factor now you have determinant of the so called big sigma z and what 

is that? It is defined in the equation 2z is a vector of random variables now. So, slowly 

now we are moving from a scalar to a vector case and it is good to get used to this 

notation. So, z is a vector of random variables and this sigma big sigma that you see is 

called the variance covariance matrix we will define what is covariance and talk about 

correlation tomorrow. But by now you should be also familiar with this terms the 

diagonals of this variance covariance matrix contains what are known as variances of the 

individual random variables and off diagonals contains the most important quantity in 

data analysis which is the covariance, all right. 

And it is a symmetric matrix. In fact, it is a symmetric positive definite matrix and 

instead of X minus mu X whole square by sigma square X in the univariate case now you 

have z minus mu z transpose sigma z inverse times z minus music. Now the sigma z 

inverse has a name it is called the precision matrix you will understand the reason for 

this name when we learn the estimation theory as to why this is called the precision 

matrix. 
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Now, this is a joint Gaussian density a very an important point that I want to adjourn the 

class with is it does not mean that this of course, it does not mean that individually X and 

Y have Gaussian densities that is a very important point that you should keep in mind 

just because X and Y jointly have a Gaussian density function it does not necessarily 

mean that individually X and Y have Gaussian density functions this individual density 

functions are known as marginal densities and will talk about that briefly and then go to 

independence and talk about covariance tomorrow, but it is important to keep that in 

mind. 

That means of course, what I mean by this is if X and Y have joined Gaussian densities. 

So, let me correct the statement slightly, if X and Y have individually Gaussian density 

functions it does not mean that they have necessarily a joint Gaussian density function. 

But if X and Y have a joint Gaussian density function then it is necessary that 

individually they have Gaussian densities. So, I am just making correction to the 

previous statement that I made earlier I said it does not it is not necessary that X and Y 

should individually have a Gaussian density function it is incorrect. 

When X and Y have a joint Gaussian density function then the marginals are going to be 

Gaussian, but not the other way round; that means, I cannot start necessarily from 

Gaussian distributed X and Y and then guarantee that the joint one is also going to be a 

Gaussian density function. It has its own implications except under special cases where 



X and y are uncorrelated when X and Y are uncorrelated the sigma that you have is a 

diagonal matrix the sigma the off diagonal elements are 0 in which case you can just 

simply factorize the joint density into a product of 2 Gaussians. So, when X and Y are 

uncorrelated and individually have Gaussian density functions the joint density function 

is also a Gaussian, but in general, it is not; on the other hand when X and Y have a joint 

Gaussian density then individually X and Y will have Gaussian densities as well you will 

understand that later on through an assignment exercise and so on. 

Tomorrow what we will do is, we will talk about the notion of independence covariance, 

the importance of correlation in the linear world, remember we said in the linear world, it 

is sufficient to know the first and second order moments we will see that with an 

example. 


