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Welcome to this lecture. This is the second and final lecture on sampling distributions, I should say. 

Well, there is a part of the sampling distribution with respect to sample correlation that will discuss 

later, but more or less we would be covering all the sampling distributions that we require for 

hypothesis testing through this lecture. And again, in this lecture, what we are going to look at is a 

continuation of what we discussed previously. 
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We were going to look at sampling distributions of difference in sample means, sample variance, ratios 

of sample variances, sample proportions and also difference in sample proportion. Now, all of these are 

kind of in line with examples that we discussed in the motivation lecture. And let me also tell you up 

front that in this lecture mostly it is a statement of results, neither we will try to prove anything nor use 

many standard results that are available and so may be for a few will use some standard results, but will 

not attempt to prove anything. And, anyway in 10 hour course there is not much time to prove 



anything, and we are not interested in that we want quickly get to hypothesis testing. And of course, 

just to reiterate it is important to study the sampling distributions for hypothesis testing because after all 

the entire test of hypothesis rests on the knowledge of the sampling distribution of the test statistics that 

we use. In the previous lecture, we looked at sampling distribution of mean under different conditions 

known variance unknown variance and so on. 
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Now, we look at difference as in sample means again Ii would advise you to go back and relate to the 

examples that we discussed in the motivation lecture. At least one example involved comparison of 

means, right, where we were looking at the nylon connector example. So, of course, this situation arises 

in many, many other applications as well. So, let us come to point here when I have 2 populations of 

different means, let us say mu 1 and mu 2, I would like to know for example, if indeed they are 

different or not, and for this purposes we setup a test statistic. And this test statistic has to be 

commensurate with what I want to test, what I want to test is whether mu 1 which is the mean of 

population 1 and mu 2 which is that of population two are different from each other or not. So naturally 

the test statistic involves differences in the estimates of means and once again as I said in the previous 

lecture, we are going to use only the sample mean as an estimator of the mean; however, that should 

not preclude you from or prevent you from using other estimators. 



So, coming back to the sample mean as an estimator. If X 1 bar and X 2 bar are sample means 

computed from samples of the respective populations of sizes n 1 and n 2 and known variances. So, we 

assume in the beginning a simpler situation, where the variances of the populations are known, namely 

sigma 1 square and sigma 2 square then this test statistic X 2 bar minus X 2 bar minus mu 1 minus mu 

2 divided by square root of sigma 1 square by n 1 plus sigma 2 square by n 2 is approximately standard 

normal, if the conditions of the central limit theorem apply. What are the conditions of central limit 

theorem, well the observations have to follow out of an identical and independent distribution, right. 

Now, as usual we usually talk of the distribution of the standardized one and z is also the standardized 

one; recall in the previous lecture why we talk of this standardized test statistic. One advantage is we 

can use a standard distribution. Now, what if the variances are not known or the populations are normal 

and so on, this results that you seen equation one is of it for a general population that is X 1 and X 2 

that is the population one and population two can be characterized by any distribution in this results. 

However, if the populations are characterized by Gaussian distributions then Z follows an exact 

standard normal distribution. 
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Suppose, I do not know the variances which is the more realistic case then what do I do, well I adopt 

the same approach that I adopt in the case of sample mean that is testing of single sample mean. We 



replace the theoretical variances with the respective estimates denoted by S 1 square and S 2 square; 

once again we have not talked about how to estimate sample, how to estimate variances yet we will do 

so shortly. So, the result is again more or less the same; again this is for the large sample case, you 

should remember. The test statistic that is given in equation two is approximately standard normal. The 

only difference between the test statistic in 1 and 2 is that, we have replaced the theoretical variances 

with the respective estimates. And, what will do next is look at the small sample case, but under two 

different situations; variances are equal and variances are unequal. This is possible that 2 populations 

can have same variances. 
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How does it make a difference? Let us look at this. So, now as you must have guessed like in the 

sample mean case when the variance was unknown, and when the samples were small, the test statistic 

followed T distribution there. Here also the test statistic based on the differences in sample means of 

course, the standardized test statistic follows T distribution with n 1 plus n 2 minus 2 degrees of 

freedom. So, you can say well, we lose one degree of freedom when we estimate sample mean form 

population one and another degree of freedom when we are estimating sample mean for another 

population. So, in total, we have two degrees of freedom loss, therefore the total degrees of freedom 

that we have when it comes to estimating the variance is n 1 plus n 2 minus 2. 



We have assumed the variance to be equal or variances to be equal, and therefore, we construct what is 

known as a pooled variance. What happens is when the variances is equal, we are exploiting this 

situation to our advantage; from population one, we have sample of size n 1; from population 2, we 

have a sample of size n 2. More the number of observations to estimate a variance (Refer Time: 07:42) 

situation. Therefore, since we are already given that the variances are equal; we pooled the data 

together to estimate the common variance and that is the expression given to you in equation 4 for the 

sample variance. Where you can see in the denominator we have n 1 plus n 2 minus 2 that is nothing 

but your degrees of freedom, alright. 

So, this n 1 minus 1 and n 2 minus 1 we already know. What about S 1 square and S 2 square? S 1 

square is a sample variance estimated from the first population; S 2 square is a sample variance 

calculated from the second population. And of course, again I say here, we have not yet seen the 

expression for calculating S 1 square and S 2 square will do so very soon. Just to tell you that we are 

going at probably slightly rapid base because as I said early on in the lecture, we are looking at 

statement of results more than trying to prove anything. And, at some point this may get boring to you, 

but it is an inevitable devil you can say that we have to deal with. So, what about the small sample size, 

unequal variances case; again the same story, because it is a small sample size the test statistic would 

follows T distribution. 
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And in this case, here again we are looking at a non-Gaussian case and that is why it is an 

approximately T distributed. The difference between this and a previous cases the variances are 

unequal, therefore, I cannot pool the variance estimates to come with the common variance. And, the 

calculation is a bit more involve as you can see particularly in the calculation of degrees of freedom 

denoted by n 1 2 minus 2, the n 1 2 calculation is quite complicated compare to the previous case. But, 

we have to leave it there were no worries I mean most of the times the computer calculates set for you 

nevertheless if you have to do it by hand then you have to use this expression no other choice. But in 

the end, what is important is to know also the type of distribution it is a T distribution that does not 

change fortunately. And, as usual we have X 1 bar minus X 2 bar as the estimate of the difference in 

means. 

So, in all of this something should evolve for you that what we are doing is we first identify the 

parameter of interest in this case the difference in means then identify the test statistic before between 

identifying the parameter and identifying test statistic there is an intermediate step which is choosing 

the statistic or the estimator itself. We can say the estimator here is X 1 bar minus X 2 bar for mu 1 

minus mu 2, and the test statistic is what you see in each of this, so that is the routine that we will see in 

the remaining examples, therefore, you should not have any difficulty in terms of understanding the 

procedure. If any difficulty that you may have that would be in remembering the distributions, but that 

is all right in most of the hypothesis testing exercises. Typically, we do not have the necessarily 

remember the sampling distribution let us say in an exam I have to remember I do not have to I can be 

actually given that information on a simple sheet and perhaps we will do that for you in the exam, it is 

not a difficult thing to do. 

What is important is to understand the concepts of hypothesis testing that there is a sampling 

distribution of the statistic that you dealing with and that goodness of the entire hypothesis test realize 

on the sampling distribution apart from a few other factors such as sample sizes and variances and so 

on. So, with this we kind of close the means case, but there is one more example, I am sorry, there is 

one more example that is going to come up and with that will close the means and that has got to do 

with the paired difference of means. 
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In the previous 2 or 3 situations, we had looked at differences in means from 2 different populations; 

assuming that these 2 populations are kind of independent of each other. But now, there are we are 

looking at a situation where that is not the case; where the 2 populations are not independent, and when 

thus the situation arise. A standard example that is given is a weight-loss program where I am looking 

at a set of individuals that is I want to test a weight-loss program and I want to test that it has been 

effective. How would I test that? Well, I look at the average weight before implementing the weight-

loss program and then the average weight after the implementing the weight loss program. So, what I 

do is I randomly sample a set of individuals, before the weight loss-program, take their weights and get 

an average estimate of the average weight, and then put them through the weight-loss program and then 

again do the same calculation, take the weights and compute the average weight. 

So, now, obviously, these are the same individuals that are going to be screened for testing right. And 

there is a high level of dependency and there better be a dependency otherwise, what is the meaning of 

a weight-loss program. When we conduct test like this, in these kinds of situations, it could be a 

weight-loss program, it could be a training program to see if there is an improvement in the 

performance of teachers or students and so on, there also you will end up with this pair difference of 

means case; where these obviously, the sample sizes are identical for both population, because we are 

looking at the same set of individuals or same set of specimens you may say. So, there is a one-on-one 



correspondence, and you are looking at a pair you are looking at a pair difference therefore. In this 

case, the independence assumption is violated, and therefore it warrants a separate analysis. 

So, what is the result here the first thing is you a define this variable d I as X 1 i minus X 2 i that is 

think of X 1 i as a weight of the i th individual before the program and X 2 i as a weight after the 

program. So, we are not actually testing, it basically amounts to testing the zero mean you can say for d 

or d i, we are not individually testing for X 1 and X 2 you can think of it that way. So, now, having 

defined a variable d i as X 1 i minus X 2 i, we can now more or less think of this as a sing single 

sample mean calculation or mean hypothesis testing case. But now in terms of d, so as we did in the 

single sample case; that means, single population case where we were testing for means here we 

compute the average mean of the differences, so that is your D bar and then we calculate the variance 

in a way that we would calculate for a single population. 

So, what we have done is essentially taken 2 populations, but because they are dependent on each other 

they; they have a strong correlation between them. We have clubbed that into single population now 

described in terms of this difference variable D i that is all. Now, the result that is given here is for the 

small sample case; there is no need to specify the large sample case because we know the T distribution 

tends to Gaussian distribution. So, we do not need to state that separately. The rest of the story is the 

same. Now, the test statistic D minus mu 1 minus mu 2 by your S over root n follows T distribution 

with n minus 1 degrees of freedom where n is the sample size of the individual population. Here as we 

said earlier, both populations have to be of identical sorry, both samples have to be of identical size and 

that is your n, very good. Please keep these distributions handy of course, I will also bring up the 

respective distributions, when we take up the eight examples that we had discussed in the motivation 

lecture for hypothesis testing - illustrating the hypothesis test, alright. 
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Now, let us move on to the estimation of variance. In all of this, we have seen wherever the variance 

was unknown I have to estimate it form the sample. Once again, what is the best estimator for 

variance? There are many different variance of estimating variance, I could look at sample variance as 

you see on the screen right now or I could use range for example, as an estimator of variance and so on. 

Again given many estimators which estimated do I pick is always the question that has been of interest 

for several decades in estimation theory and continues to be so. For some situations, there are results 

that are established, but in general, there are set of criteria as we discussed in the previous lecture, for 

choosing an estimator. One criteria is that we want an accurate or an unbiased estimator and two that 

we want an efficient estimator; an estimator which gives me as low error as possible, and thirdly 

consistent estimator which is that as the sample size increases the estimate converges to the truth. So, 

these are some of the 3 very important criteria in choosing an estimator. 

And a sample variance satisfies all of this it is an accurate estimator which means it is unbiased the 

expectation of S square is nothing but sigma square of course, under some conditions. And then it is an 

efficient estimator, it is not the most efficient estimator, but it is fairly efficient; it would not be give me 

estimates with large errors. And thirdly, it is a consistent estimator as n grows large, the variance 

estimates will convert to the truth very good. So, with these points in mind, we will stick to the sample 

variance as an estimator of the variance and will work with those with this estimator only. 



Now of course, the question of interest is what is a distribution of this sample variance; can we derive 

this theoretical? Yes, we can, if you recall one of the standard results that we discussed yesterday, there 

was one result where we said when I take random variables - standardized random variables that fall 

out of a Gaussian distribution and square them and add them up, then the resulting random variable 

follows a chi square distribution. If I am adding up n such variables then the resulting random variable 

has a chi square distribution with n degrees of freedom. How does that result apply here? Well, look at 

the expression for the sample variance. What am I doing there I am actually adding up squared 

variables of course, there are deviations; are these deviation variables normally distributed? Well, yes, 

if you assume that the distributions are following out of a Gaussian distribution. If they are not, what 

about it will discuss that shortly, but assume that the samples are following out of a Gaussian 

distribution. 

Then we know X bar also follows a Gaussian distribution, difference of two Gaussian distributed 

variables also follows a Gaussian distribution. Therefore, I can apply that result here and come to the 

conclusion that S square follows a chi square distribution with here with n minus 1 degrees of freedom 

that is the only point that we have to watch out for why n minus 1 degrees of freedom, why not n 

degrees of freedom. Because, the result that we had seen earlier says that the resulting random variable 

follows a chi square distribution the n degrees of freedom, but the catch here is that although we are 

adding n terms here, we do not really have n independent terms. And, let me actually explain that to 

you quickly. 
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Adding up n such terms and the point of contention is whether all these terms are independent. What 

this mean says let us look at linear dependence part from linear algebra view point, we say that n 

variables are linearly independent; if you cannot find linear combination that yields 0, or in other words 

if you can express one as a linear combination of the other. Now, if you take X i minus X bar, we know 

that X bar itself has been computed form X i right, which means that there is a result what this means is 

there is a relation between X i and X bar. How does that come about from this we can show that these 

deviations variable are not completely independent; there is a linear dependence between them. How 

do we do that? We have n x bar equals sigma X i, right and I have n such X bars and straight away I 

can see that sigma minus X bar is 0. So, which means there is a non trivial combination of X i minus X 

bars that gives me 0, which means truly this n deviation quantities are not linearly independent. Simply 

said if I know n minus 1 deviation quantities, I can construct the nth one; it does not matter it whether it 

is last one or it is a first one and so on. 

So, this is another way of looking at the loss of decrease of freedom and that also explains why a need 

an n minus 1 here although I have n terms, so that I get a unbiased estimator. And on your calculators, 

normally we see S n minus 1, and also an S n, this S n minus 1 is nothing but the positive square root of 

S square based on n minus 1 in the denominator. Very often, you will also see the literature a one over n 

in place of n minus 1. So, we call as S square subscript n. The rest of the expression looks the same. 



And the positive square root of this leads to S n. Clearly if this is unbiased, this is the biased estimator, 

because expectation s square n is n minus 1 over n sigma square or you can say that this is 1 minus 1 

over n sigma square. So, for finite n, this is a biased estimator and you can see the bias here. However 

when n becomes very large then this a 1 over n goes to 0; as result, it becomes what is non as 

aesthetically unbiased estimator of variance. And therefore, for a large n whether you use s square n 

minus 1 or S square n it should not make so much of a difference, but for small n let say 20, 30 and so 

on, it can make a bit of a difference. 

In hypothesis testing, typically we work with this, because we do not know whether we have large 

samples or small samples. But if I know for sure that I have large samples typically the preference is 

for this. The reason is you can show theoretically that although this has a bias, this is more efficient S 

square n although it is biased; it is more efficient than S square n minus 1, which means it has a lower 

error than the S square n minus 1. And for large n, typically does not matter whether you use this or 

not, so we prefer to use this. There are other reasons also which have beyond this scope of this course; 

the bottom line is we will use this, but there is also this competing estimator and on you are calculators 

and an a good calculator, you will see both of this, alright. 

Now, we are convinced that there are n minus 1 degree of freedom only, although we have n terms in 

the expression for the sample variance. So under the Gaussian distribution assumption for the 

observation, we can now say that the sample variance follows as a chi square distribution or typically 

we work with standardized statistics. So, we say that the n minus 1 times S square by sigma square 

follows a chi square distribution with n minus 1 degree of freedom. Now in a general case, when x size 

fall out of some arbitrator distribution non Gaussian distribution what can be said well nothing can be 

said theoretically about the distribution, may be for the large sample case we can say it follows a 

Gaussian distribution or something like that. But now you can resort to the Monte Carlo simulation 

approach and check what kind of distributions S square would have for a non Gaussian kind of 

distribution. Again, you can go back here and ask this question through simulations. 
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So, let say I do this, say replicate it is a 1000 times, what do I want to replicate? The distribution of the 

calculation of variance, so, we use the variance command here and I leave it to you to check in R 

whether this variance command uses S square n or S square n minus 1 in R. At the moment, we do not 

worry about it. Now what do I have to supply, I will let us give a non Gaussian distribution let say 

uniform distribution. And let us take about 20 samples, so that we are looking at a small sample case 

and standard uniform distribution all right. So, you see seems to follow Gaussian distribution. What 

about even fewer samples may be about 8, so easy slowly it is getting skewed; more or less, it is a chi 

square distribution, but perhaps with the different degrees of freedom. So, the distribution stills seems 

to be chi square. 

Now chi square distribution has this feature that it is defined only over non-negative values. Clearly, 

because as you can see from the constructional of the chi square variable it has some square, so some 

squares can only be a non zero, non-negative value, right. Therefore, always chi square distributed 

variables are defined over the intervals 0 to infinity. We can go back to the large sample case and you 

should expect a Gaussian distribution. So, we can take here 200 samples and see what happens you get 

a nice Gaussian distribution. Everything in his world seems to be standing to Gaussian right; at least 

when it comes to test statistics, so that is a nice thing at least we know in the large sample case 

everything tends to the Gaussian one fix distribution that I can always assume, good. 



So, now let us get back to the discussion although nothing can be said theoretically about the 

distribution, we have to use simulations to do that. What we can definitely say is that this S square that 

we have defined here on the screen is always an unbiased estimator, of course, assuming that the x is a 

fall in out a random sample, they belong to a random sample that means, they are all independent of 

each other. When x size are correlated then it becomes a complicated thing to analyze, and we will not 

worry about that in this course. 
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The next situation of interest is ratio of variances and I think we talked about this again whether in the 

oxide layer thickness for the semi conducted manufacturing process. We wanted to see if one mixture 

of gases gave me a lower variance than another mixture of gases. So, typically, we do not compute 

differences here, we compute ratios of variances. And this ratio of variances follow us and f distribution 

again with the standard assumption in place; we assume that we have taken to random samples 

meaning collection of observations of sizes n 1 and n 2 respectively, and also assume that the samples 

are falling out of a Gaussian distribution. So, you see as compare to the mean the result available for 

sample variances and ratio of variances are quite restrictive, whereas the sample mean always seems to 

follow Gaussian distribution or T distribution more or less depending on other sample size is large or 

small. But, when it comes to the variance we have theoretical results available predominantly only for 

the Gaussian case. There are of course, may be a few research papers that you can look up depending 



on you are needs. What kind of distribution this ratio of variances follows; when they fall out of that 

the samples fall out of a non Gaussian distribution. 

We will in this course assume that is samples fall out of a Gaussian distribution. This F distribution is 

characterized by 2 degrees of freedom. Again, let me tell you what degrees of freedom means in 

statistics; degrees of freedom means in how many independent ways the variability of the random 

variable is affected. When it comes to the F variable, because it is a ratio of 2 random variables S 1 

square and S 2 square, we say that the F distribution is characterized by 2 degrees of freedom nu 1 and 

nu 2. And, nu 1 is n 1 minus 1, nu 2 is a n 2 minus 1. The reason for n 1 minus n 2 minus 1 is now 

obvious from the previous discussion; S 1 square has n 1 minus 1 degrees of freedom; S 2 square has n 

2 minus 1 degrees of freedom. So, you can expect therefore, the F distribution to have n 1 minus 1 

comma n 2 minus 1 degrees of a freedom. 

The analytical expression for the F distribution is quite intimidating it can actually be really 

intimidating. However, we do not have to worry about it; normally, we do not give out the analytical 

expressions, either we look up a table in a book or the more modern way of doing that would be to just 

use the computer software package like R, where you turn to the R F to generate a randomly sample 

from an F distribution or P F to compute the probability of a random variable which as F distribution 

and so on. So, go ahead and actually generate a probability density function the probability density 

function of a random variable that has F distribution with some pre specified numerator and 

denominator degrees of freedom. Again, this is a result we will use this result in hypothesis testing. 



(Refer Slide Time: 32:44) 

 

Now, the final thing to be discussed in this lecture is that of the sample proportion. Again recall the 

example that we discussed in the motivation lecture, there is an manufacture of a controllers for 

automobile application, and the manufacture claims that the proportion of defective items is not more 

than a particular value and we want to test that hypothesis. So, what do we do here, of course, now the 

random variable that we are looking at is a binomial distributed random variable, because now we are 

looking at proportions were of the success or failure? And once again, you should go back to the 

definition of a binomial random variable, and recap all the conditions under which a random variable 

follows a binomial distribution. And one of the parameters, the only parameter that characterized as a 

binomial distribution is the proportion or the probability of success, which is denoted by p.  

So, assume that now I actually take a sample of size n from a population which follows a binomial 

distribution the probability success being P, X is a number of observation belonging to the success class 

than P would be X by n. So, what I do is, I collect the sample of size n and count the number of 

success. So, in the case of defective items, I would randomly sample from a lot and through an 

experiment or through inspection and determine what is non-defective and call that as X. Then the 

proportion and estimate of the proportion of success probability success is given by X by n naturally, 

where X is the number of success cases by n which is the total number of cases that you have in your 

sample. We call that has P hat as an estimate of the proportion sorry probability of success. The small p 



is true probability of success. 

We will also make an assumption that population is fairly large that is important. And sample size is 

also going to satisfy certain conditions given at the bottom of the slide. Now the result of interest was is 

the on the sampling distribution of P hat, and the results says that P hat also follows a Gaussian 

distribution which is very nice; provided certain conditions are made. And one of the key conditions 

sees that the true probability of success is not to close to 0 or 1; that means, here population should not 

have too many success cases or too few success cases. There should be some reasonable balance 

between success and failure; in that case, the P hat follows a Gaussian distribution. In fact, I would say 

that go to you r package, and check if this result holds good by means of simulation again using the 

same idea repeat experiments using replicate and plot a histogram. 

What about the mean and variance of the Gaussian distribution the mean is n p, if you recall from the 

discussion on the statistics that we had, we said that the expected value of a binomially distributed 

random variable is n p. And variance is given by n p times 1 minus p that is for that case. But here as 

you can see X follows a binomial distribution, but p had therefore, also follows a binomial distribution, 

but it is X by n and therefore, you would have here normal distribution with variance p times 1 minus p 

over n. 

So, now we move on to the last item in this lecture, where we discuss the case of a sample proportion. 

And again, you should recall the corresponding example that we used in the motivating lecture, where 

we were looking at the number of defective controllers in controllers applied by manufacturer for 

automobile applications. And in general, of course, they supplies to all those cases where we are 

looking at the defective, non-defective or success, failure, head and tail in a toss - coin toss and so on. 

So, we the setting as is as follows, we have a population characterized by binomial distribution and 

probability of success being p; and from which, we randomly sample observation of size n. The natural 

estimator of the proportion of success - the number of success in a sample of size n is denoted by X in 

the slide. And an estimate of the probability of success is naturally X by n that is very much easy to 

understand. 

If I want to know what is a probability of getting a head in a toss of a coin. What do I do, I repeatedly 

conduct those trials the coin toss trials and count the number of heads in those trials let say I conduct 



about hundred trials and I count and I get about let us say 55 heads then the probability of getting a 

head in any coin toss in general would be 55 by 100 of course, that would give you 0.55. And, as you 

conduct more and more trials that is as a number of observation increase or the sample size increase, 

we should expect to the estimate to converts to the truth. So, here an unbiased estimator of the 

probability of success is P hat given by X by n. Why is it unbiased? It is very easy to see expectation of 

P hat is expectation X by n and we know from theory that if X has is a binomially distributed random 

variable, its averages n p, therefore, expectation of P hat is p, alright. 

Now with that estimator question is, what is the sampling distribution of P hat under the assumption 

that the population is fairly large, and that the probability of success p remains constant and that a 

couple of more assumptions P hat approximately follows a Gaussian distribution with expected value p 

showing that it is an unbiased estimator and the variance being p times 1 minus p by n. How do you get 

this? Well, expectation of P hat is expectation of X by n, so that any ways establish that the mean of P 

hat is p which is the probability of success. Variance of P hat is variance of X by n square; right. 

And, we know once again from the lecture go back to the lecture on statistics that variance of a 

binomially distributed random variable is n p times 1 minus p. Therefore, variance of P hat would be n 

p times 1 minus p by n square, where you get p, therefore, the variance of P hat to be p times 1 minus p 

by n. Now, this result is valid for large n; that means, in the coin toss example, you would have 

conducted many trials or in the defective controller example, you would have collected enough items 

not 5 or 10 items in your random sample lot and also that the probability of success is neither to low 

not to large. That means, the in the original population, you should not have 2 few defective items in 

terms of proportion or too large as number of defective items or non-defective items as well. And, there 

is a typical guideline that is given here this that is approximation is valid when n p is greater than 5 and 

the other condition that is given as well. 
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So, we assume that more or less this condition hold good at least in this course for the general case I 

urge you to refer to the literature. Now as usual we work with standard or standardized statistics, since 

P hat follows a Gaussian distribution, the variable Z, which is P hat minus p by sigma, should also 

follow a standard a normal distribution. And that is what your equation tells you here that P hat minus p 

by square root of the variance of P hat follows an approximately standard normal distribution, because 

P hat itself follows an approximate Gaussian distribution. We use this in the hypothesis testing of the 

proportions. 

Now in the next lecture of course, now will focus on hypothesis testing, but before I conclude in this 

lecture, I would like to reiterate that it is not just important to know these results, but what is equally 

important is to know the assumptions under which we have derived this sampling distribution, because 

when you have a case of hypothesis testing, you should first look at the assumptions and see whether 

those assumptions actually match with the assumptions that we are made here. If not, then you may 

have to turn to a literature or some other text book to see what test statistic is appropriate and what is 

the sampling distribution of the test statistic under the assumptions in which you have going to conduct 

the hypothesis test.  

In this course, on the reminder of this course, we will assume that whatever assumptions we have made 



here are the assumptions under that will apply to the hypothesis test that examples that we are going to 

look at. 
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So, the final thing that is of interest towards differences in proportions. And again, the story is the same 

very much similar to the difference in the samples mean case. We have two different populations; 

remember the soft drink example, we have 2 campuses and we wanted to test, if the proportion of 

students on each campus is same when it comes to preference for a soft drink. So, here we have two 

populations; from which, I have randomly drawn samples of sizes n 1 and n 1, and as usual all the other 

assumptions holding good. I estimate the proportion of has P 1 hat and P 2 hat and the difference that is 

P 1 hat minus P 2 hat approximately follows a normal distribution. As a result of which, Z which is a 

standardized statistics corresponding to difference in proportions also follows approximately standard 

Gaussian distribution. 

Now, Z is not truly a statistic, because p is unknown in the denominator, we do not know p. So, what 

we do is as for as a denominator is concerned, any way p 1 minus p 2 is something that we will 

postulate in a hypothesis test. So, in the numerator it is not of a concern; the denominator it is a concern 

why have the p 1 and p 2 appeared in the denominator because if you can see p 1 times 1 minus p 1 

over n 1 is nothing but the sigma square, the variance or the you can say variance of P 1 hat and 



likewise, the other term being variance of P 2 hat. They have appeared there because we are 

standardizing the P 1 hat minus P 2 hat. The point it is now I need to know the denominator to be able 

to calculate the observed statistic p 1 minus p 2 is specified by the user in a hypothesis test, but the 

denominator has to be supplied as well. If the denominator is not supplied, typically that is the case 

then what you do is you use the same approach that you use in the sample mean case. When we did not 

know the variance, we used the estimates of variance. 

Here the variance is in terms of a proportions, so we use the respective estimates of proportions in this 

terms to arrive at the estimates of the respective variances so that is the approach that is used here. At 

this point, do not get confused that if I know p 1 and p 2; that means, if I am supplying p 1 and p 2 in 

the denominator then where the question of hypothesis is testing. We are not supplying the true p 1 and 

true p 2; we are saying I do not know the true p 1 and p 2. One option is to say, I will not solve this 

problem and go home, and sleep happily. The other option is to be practical and say well let me get an 

estimate and one of the easy ways of doing that is to use the estimates of the proportion from the 

respective samples and plug that in to the expression for Z, calculate the observed statistics. P 1 hat and 

P 2 hat have calculated from the respective samples; p 1 minus p 2 is specified by the user in the 

hypothesis test, and the denominator is again calculated based on your estimates that is P 1 hat and P 2 

hat that is the story. 
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Again, you should remember that, this result is only valid under certain assumptions all right and that 

brings us to the end of this lecture. In fact, the end of the topic of sampling distributions as for as the 

univariate case is concerned, for the bivariate case, when we look at correlation we will talk about the 

sampling distribution of correlation in that respective lecture that is the respective lecture on hypothesis 

testing of correlations. The sampling distributions are useful in many different ways, but the 2 uses for 

us in this course is in hypothesis testing and two is in construction of confidence intervals that we will 

demonstrate later on. 

So, the next lecture that is in order is; obviously, hypothesis testing the crux of this course; well, where 

we will introduced some key terminology type I error, type II error, p value, significance level, power 

of a hypothesis test and so on. And then, take the sampling distributions take the 8 examples that we 

took up in the motivation lecture, quickly go through all those examples. And we now have all the 

paraphernalia that is required for hypothesis testing, now it is just a matter of implementing the 

standard procedure, therefore, when it comes to using this informational example it is going to be fairly 

very easy thing and a breeze thing, alright. 

So, see you in the next lecture. Hopefully, you are enjoying all these lectures.  

Bye for now. 

 


